The phase diagram of sodium chloride (NaCl) under laser shock compression has been studied at Linac Coherent Light Source (LCLS) at the x-ray free-electron laser facility. Both solid–solid (B1 → B2) and solid–liquid (B2 → liquid) transitions have been observed along the Hugoniot over nanosecond time scales. By combining structural measurements through in situ x-ray diffraction, pressure determination through velocimetry, and a thermal equation-of-state, the shock-compressed data are used to constrain the phase diagram of NaCl. Transformation into the B2 phase is found to occur at 28(2) GPa, and B2–liquid coexistence is observed between 54(4) and 66(6) GPa, with near full melt at 66(6) GPa. Late-time pressure release from an initial shocked B2-state results in a B2 → B1 back transformation. Our results show agreement with previous static compression data, suggesting that the time scale for melting is very rapid and that equilibrium states in NaCl are being accessed over nanosecond time scales. A multiphase equation-of-state description of NaCl incorporated into a one-dimensional hydrocode is used to interpret pressure and temperature evolution over these rapid time scales.

1.
M. G.
Gorman
,
A. L.
Coleman
,
R.
Briggs
 et al, “
Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth
,”
Sci. Rep.
8
,
16927
(
2018
).
2.
R.
Briggs
,
M. G.
Gorman
,
A. L.
Coleman
 et al, “
Ultrafast x-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa
,”
Phys. Rev. Lett.
118
,
25501
(
2017
).
3.
R. F.
Smith
,
J.
Eggert
,
R.
Jeanloz
 et al, “
Ramp compression of diamond to five terapascals
,”
Nature
511
,
330
333
(
2014
).
4.
J. K.
Wicks
,
R. F.
Smith
,
D. E.
Faratanduono
 et al, “
Crystal structure and equation of state of Fe-Si alloys at super-earth core conditions
,”
Sci. Adv.
4
,
5864
(
2018
).
5.
R. F.
Smith
,
D. E.
Fratanduono
,
D. G.
Braun
 et al, “
Equation of state of iron under core conditions of large rocky exoplanets
,”
Nat. Astron.
2
,
452
458
(
2018
).
6.
T. S.
Duffy
and
Y.
Wang
, “
Pressure-volume-temperature equations of state
,” in
Ultrahigh Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior
(
Walter de Gruyter GmbH
,
2019
), pp.
425
458
.
7.
A.
Lazicki
,
D.
McGonegle
,
R.
Rygg
 et al, “
Metastability of diamond ramp-compressed to 2 terapascals
,”
Nature
589
,
532
535
(
2021
).
8.
T. S.
Duffy
and
R. F.
Smith
, “
Ultra-high pressure dynamic compression of geological materials
,”
Front. Earth Sci.
7
,
23
(
2019
).
9.
S.
Tracy
,
S.
Turneaure
, and
T.
Duffy
, “
In situ x-ray diffraction of shock-compressed fused silica
,”
Phys. Rev. Lett.
120
,
135702
(
2018
).
10.
A. L.
Coleman
,
M. G.
Gorman
,
R.
Briggs
 et al, “
Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast x-ray diffraction
,”
Phys. Rev. Lett.
122
,
255704
(
2019
).
11.
R.
Briggs
,
F.
Coppari
,
M. G.
Gorman
 et al, “
Measurement of body-centered cubic gold and melting under shock compression
,”
Phys. Rev. Lett.
123
,
045701
(
2019
).
12.
Y.
Fei
,
A.
Ricolleau
,
M.
Frank
 et al, “
Toward an internally consistent pressure scale
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
9182
9186
(
2007
).
13.
N.
Sata
,
G.
Shen
,
M. L.
Rivers
 et al, “
Pressure-volume equation of state of the high-pressure B2 phase of NaCl
,”
Phys. Rev. B
65
,
104114
(
2002
).
14.
J. M.
Brown
, “
The NaCl pressure standard
,”
J. Appl. Phys.
86
,
5801
(
1999
).
15.
M.
Flórez
,
J. M.
Recio
,
E.
Francisco
 et al, “
First-principles study of the rocksalt—Cesium chloride relative phase stability in alkali halides
,”
Phys. Rev. B
66
,
144112
(
2002
).
16.
J. N.
Fritz
,
S. P.
Marsh
,
W. J.
Carter
 et al, “
The Hugoniot equation of state of sodium chloride in the sodium chloride
,” in
Accurate Characterization of the High-Pressure Environment
, National Bureau of Standards, U. S. Special Publication 326. 201–208, (1971).
17.
X.
Li
and
R.
Jeanloz
, “
Measurement of the B1-B2 transition pressure in NaCl at high temperatures
,”
Phys. Rev. B
36
,
474
479
(
1987
).
18.
N.
Nishiyama
,
T.
Katsura
,
K.
Funakoshi
 et al, “
Determination of the phase boundary between the B1 and B2 phases in NaCl by in situ x-ray diffraction
,”
Phys. Rev. B
68
,
134109
(
2003
).
19.
P. I.
Dorogokupets
and
A.
Dewaele
, “
Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2 internally consistent high-temperature pressure scales
,”
High Press. Res.
27
,
431
446
(
2007
).
20.
R.
Boehler
,
M.
Ross
, and
D. B.
Boercker
, “
Melting of LiF and NaCl to 1 mbar: Systematics of ionic solids at extreme conditions
,”
Phys. Rev. Lett.
78
,
4589
(
1997
).
21.
J.
Akella
,
S. N.
Vaidya
, and
G. C.
Kennedy
, “
Melting of sodium chloride at pressures to 65 kbar
,”
Phys. Rev.
185
,
1135
(
1969
).
22.
Z.
Li
and
J.
Li
, “
Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current
,”
Am. Mineral.
100
,
1892
1898
(
2015
).
23.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
), Vol. 5.
24.
M. L.
Marcondes
,
R. M.
Wentzcovitch
, and
L. V.
Assali
, “
Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl
,”
Solid State Commun.
273
,
11
16
(
2018
).
25.
D. L.
Decker
, “
High-pressure equation of state for NaCl, KCl, and CsCl
,”
J. Appl. Phys.
42
,
3239
(
1971
).
26.
F.
Birch
, “
Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K
,”
J. Geophys. Res. Solid Earth
83
,
1257
1268
, https://doi.org/10.1029/JB083iB03p01257 (
1978
).
27.
M.
Zhongying
, “Strength, elasticity and phase transition study on NaCl and MgO-NaCl mixture to mantle pressures,” Electronic Thesis and Dissertation Repository (2012), p. 1043. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=2327&context=etd
28.
P.
Tolédano
,
K.
Knorr
,
L.
Ehm
 et al, “
Phenomenological theory of the reconstructive phase transition between the NaCl and CsCl structure types
,”
Phys. Rev. B
67
,
144106
(
2003
).
29.
K.
Nishidate
,
M.
Baba
,
T.
Sato
 et al, “
Molecular-dynamics studies on the shock-induced phase transition of a MgF2 crystal
,”
Phys. Rev. B
52
,
3170
(
1995
).
30.
See https://www.mtixtl.com/ for MTI Corp.
31.
P. M.
Celliers
,
D. K.
Bradley
,
G. W.
Collins
 et al, “
Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
,”
Rev. Sci. Instrum.
75
,
4916
(
2004
).
32.
S. B.
Brown
,
A.
Hashim
,
A.
Gleason
 et al, “
Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source
,”
Rev. Sci. Instrum.
88
,
105113
(
2017
).
33.
R. P.
Drake
,
Introduction to High-Energy-Density Physics: High-Energy-Density Physics
(
Springer
,
2006
), pp.
1
17
.
34.
P.
Hart
,
S.
Boutet
,
G.
Carini
 et al, “
The CSPAD megapixel x-ray camera at LCLS
,”
Proc. SPIE
8504
, 51–61 (
2012
).
35.
S. J.
Tracy
,
R. F.
Smith
,
J. K.
Wicks
 et al, “
In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction
,”
Phys. Rev. B
99
,
214106
(
2019
).
36.
P. A.
Rigg
,
M. D.
Knudson
,
R. J.
Scharff
 et al, “
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
,”
J. Appl. Phys.
116
,
033515
(
2014
).
37.
W.
Theobald
,
J. E.
Miller
,
T. R.
Boehly
 et al, “
X-ray preheating of window materials in direct-drive shock-wave timing experiments
,”
Phys. Plasmas
13
,
122702
(
2006
).
38.
J. T.
Larsen
and
S. M.
Lane
, “
HYADES—A plasma hydrodynamics code for dense plasma studies
,”
Transf. J. Quant. Spectrosc. Radiat.
51
,
179
186
(
1994
).
39.
M. V.
Thiel
,
Compendium of Shock Wave Data
, Lawrence Livermore Laboratory Report No. UCRL-50108, Livermore, 452–457, 1977.
40.
M. S. T.
Bukowinski
and
J.
Aidun
, “
First principles vs spherical ion models of the B1 and B2 phases of NaCl
,”
J. Geophys. Res. Solid Earth
90
,
1794
1800
, https://doi.org/10.1029/JB090iB02p01794 (
1985
).
41.
P.
Vinet
,
J.
Ferrante
,
J. H.
Rose
 et al, “
Compressibility of solids
,”
J. Geophys. Res. Solid Earth
92
,
9319
9325
, https://doi.org/10.1029/JB092iB09p09319 (
1987
).
42.
L. V.
Al’tshuler
,
L. V.
Kuleshova
, and
M. N.
Pavloskii
, “
The dynamic compressibility, equation of state and electrical conductivity of sodium chloride at high pressures
,”
Sov. Phys. JETP
12
,
10
15
(
1961
).
43.
P. C.
Myint
,
E. L.
Shi
,
S.
Hamel
 et al, “
Two-phase equation of state for lithium fluoride
,”
J. Chem. Phys.
150
,
074506
(
2019
).
44.
T.
Ogura
,
K. G.
Nakamura
, and
K.
Kondo
, “
Time-resolved infrared radiometry of NaCl crystals under shock compression between 17 and 43 GPa
,”
Phys. Rev. B
70
,
144110
(
2004
).
45.
T. J.
Ahrens
,
G. A.
Lyzenga
, and
A. C.
Mitchell
, “
Temperatures induced by shock waves in minerals: Applications to geophysics
,” in
High-Pressure Research in Geophysics
, Advances in Earth and Planetary Sciences Vol. 12 (
Kluwer
,
1982
), pp.
579
594
.
46.
S. B.
Kormer
,
M. V.
Sinitsyn
,
G. A.
Kirillov
 et al, “
Experimental determination of temperature in shock-compressed NaCl and KCl and of their melting curves at pressures up to 700 kbar
,”
Sov. Phys. JETP
21
,
689
700
(
1965
).
47.
D. R.
Schmitt
,
T. J.
Ahrens
, and
B.
Svendsen
, “
Shock-induced melting and shear banding in single-crystal NaCl
,”
J. Appl. Phys.
63
,
99
106
(
1988
).
48.
P. G.
Heighway
,
M.
Silwa
,
D.
McGonegle
 et al, “
Nonisentropic release of a shocked solid
,”
Phys. Rev. Lett.
123
,
245501
(
2019
).
49.
P. G.
Debenedetti
, “
When a phase is born
,”
Nature
441
,
168,169
(
2006
).
50.
M. D.
Knudson
and
Y. M.
Gupta
, “
Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals
,”
J. Appl. Phys.
91
,
9561
(
2002
).
51.
M.
Bastea
,
S.
Bastea
, and
R.
Becker
, “
High pressure phase transformation in iron under fast compression
,”
Appl. Phys. Lett.
95
,
241911
(
2009
).
52.
J. W.
Christian
,
The Theory of Transformations in Metals and Alloys
(
Oxford
,
Pergamon
,
1965
), Vol. 65, pp.
11
12
.
53.
M.
Badin
and
R.
Martoňák
, “
Nucleating a different coordination in a crystal under pressure: A study of the B1-B2 transition in NaCl by metadynamics
,”
Phys. Rev. Lett.
127
,
105701
(
2021
).
54.
M.
Grujicic
and
G. B.
Olson
, “
Dynamics of martensitic interfaces
,”
Interface Sci.
6
,
155
164
(
1998
).
55.
B. J.
Jensen
,
G. T.
Gray
, and
R. S.
Hixson
, “
Direct measurements of the α-ɛ transition stress and kinetics for shocked iron
,”
J. Appl. Phys.
105
,
103502
(
2009
).
56.
M.
Bastea
,
S.
Bastea
,
J. E.
Reaugh
 et al, “
Freezing kinetics in overcompressed water
,”
Phys. Rev. B
75
,
172104
(
2007
).
57.
N.
Von Barge
and
R.
Boehler
, “
Effect of non-hydrostaticity on the α-ɛ transition of iron
,”
High Pressure Res.
6
,
133
140
(
1990
).
58.
R.
Boehler
,
N.
Von Bargen
, and
A.
Chopelas
, “
Melting, thermal expansion, and phase transitions of iron at high pressures
,”
J. Geophys. Res. Solid Earth
95
,
21731
21736
, https://doi.org/10.1029/JB095iB13p21731 (
1990
).
59.
R. D.
Taylor
,
M. P.
Pasternak
, and
R.
Jeanloz
, “
Hysteresis in the high pressure transformation of bcc- to hcp-iron
,”
J. Appl. Phys.
69
,
6126
(
1991
).
60.
R. F.
Smith
,
J. H.
Eggert
,
R. E.
Rudd
 et al, “
High strain-rate plastic flow in Al and Fe
,”
J. Appl. Phys.
110
,
123515
(
2011
).
61.
R. F.
Smith
,
R. W.
Minich
,
R. E.
Rudd
 et al, “
Orientation and rate dependence in high strain-rate compression of single-crystal silicon
,”
Phys. Rev. B
86
,
245204
(
2012
).
62.
R. F.
Smith
,
J. H.
Eggert
,
D. C.
Swift
 et al, “
Time-dependence of the alpha to epsilon phase transformation in iron
,”
J. Appl. Phys.
114
,
223507
(
2013
).
63.
J.
Wang
,
F.
Coppari
,
R. F.
Smith
 et al, “
X-ray diffraction of molybednum under shock compression to 450 GPa
,”
Phys. Rev. B
92
,
174114
(
2015
).
64.
R. G.
Kraus
,
F.
Coppari
,
D. E.
Fratanduono
 et al, “
Melting of tantalum at multimegabar pressures on the nanosecond timescale
,”
Phys. Rev. Lett.
126
,
255701
(
2021
).
65.
H. B.
Radousky
,
M. R.
Armstrong
,
R. A.
Austin
 et al, “
Melting and refreezing of zirconium observed using ultrafast x-ray diffraction
,”
Phys. Rev. Res.
2
,
013192
(
2020
).
66.
M. G.
Gorman
,
A. L.
Coleman
,
R.
Briggs
 et al, “
Recovery of metastable dense Bi synthesized by shock compression
,”
Appl. Phys. Lett.
114
,
120601
(
2019
).
67.
R.
Boehler
,
I. C.
Getting
, and
G. C.
Kennedy
, “
Grüneisen parameter of NaCl at high compressions
,”
J. Phys. Chem. Solids
38
,
233
236
(
1977
).

Supplementary Material

You do not currently have access to this content.