The development of sensitive and low-cost techniques for identifying valve dysfunction has become inevitable in the context of increasing death due to cardiac diseases. The present work attempts to propose a novel technique for cardiac auscultation based on graph theory. The sixty heart sound signals from normal heart (NMH) and with aortic stenosis (ASH) are subjected to Fast Fourier Transform (FFT) and complex network analyses. The murmur signals, a time-series signal, carry information about the blood flow through the heart, which gets exposed in the graph constructed and its features. The finer details of the murmur signal from the defective aortic valve and the normal aortic valve are reflected as the increased number of frequency components in FFT and as interconnected clusters without uncorrelated nodes in the graph of ASH. The distinction in graph features forms the basis of classification based on machine learning techniques (MLTs). When the unsupervised MLT-principal component analysis gives 86.8% total variance, the supervised MLTs-K nearest neighbor (KNN), support vector machine, and KNN subspace ensemble classifiers give 100%, 95.6%, and 90.9% prediction accuracy, suggesting its potential in remote auscultation in rural health centers.

1.
G. A.
Roth
,
G. A.
Mensah
,
C. O.
Johnson
,
G.
Addolorato
,
E.
Ammirati
,
L. M.
Baddour
,
N. C.
Barengo
,
A. Z.
Beaton
,
E. J.
Benjamin
, and
C. P.
Benziger
,
J. Am. Coll. Cardiol.
76
,
2982
(
2020
).
2.
M.
Nishiga
,
D. W.
Wang
,
Y.
Han
,
D. B.
Lewis
, and
J. C.
Wu
,
Nat. Rev. Cardiol.
17
,
543
(
2020
).
3.
C.
Huang
,
Y.
Wang
,
X.
Li
,
L.
Ren
,
J.
Zhao
,
Y.
Hu
,
L.
Zhang
,
G.
Fan
,
J.
Xu
,
X.
Gu
,
Z.
Cheng
,
T.
Yu
,
J.
Xia
,
Y.
Wei
,
W.
Wu
,
X.
Xie
,
W.
Yin
,
H.
Li
,
M.
Liu
,
Y.
Xiao
,
H.
Gao
,
L.
Guo
,
J.
Xie
,
G.
Wang
,
R.
Jiang
,
Z.
Gao
,
Q.
Jin
,
J.
Wang
, and
B.
Cao
,
Lancet
395
,
497
(
2020
).
4.
S. S.
Virani
,
A.
Alonso
,
H. J.
Aparicio
,
E. J.
Benjamin
,
M. S.
Bittencourt
,
C. W.
Callaway
,
A. P.
Carson
,
A. M.
Chamberlain
,
S.
Cheng
,
F. N.
Delling
,
M. S. V.
Elkind
,
K. R.
Evenson
,
J. F.
Ferguson
,
D. K.
Gupta
,
S. S.
Khan
,
B. M.
Kissela
,
K. L.
Knutson
,
C. D.
Lee
,
T. T.
Lewis
,
J.
Liu
,
M. S.
Loop
,
P. L.
Lutsey
,
J.
Ma
,
J.
Mackey
,
S. S.
Martin
,
D. B.
Matchar
,
M. E.
Mussolino
,
S. D.
Navaneethan
,
A. M.
Perak
,
G. A.
Roth
,
Z.
Samad
,
G. M.
Satou
,
E. B.
Schroeder
,
S. H.
Shah
,
C. M.
Shay
,
A.
Stokes
,
L. B.
VanWagner
,
N.-Y.
Wang
, and
C. W.
Tsao
,
Circulation
143
,
e254
(
2021
).
5.
M.
Amini
,
F.
Zayeri
, and
M.
Salehi
,
BMC Public Health
21
,
401
(
2021
).
6.
F.
Torrent-Guasp
,
M. J.
Kocica
,
A. F.
Corno
,
M.
Komeda
,
F.
Carreras-Costa
,
A.
Flotats
,
J.
Cosin-Aguillar
, and
H.
Wen
,
Eur. J. Cardio-Thoracic Surg.
27
,
191
(
2005
).
7.
K.
Maganti
,
V. H.
Rigolin
,
M. E.
Sarano
, and
R. O.
Bonow
,
Mayo Clin. Proc.
85
,
483
(
2010
).
8.
A.
Matta
and
N.
Moussallem
,
Indian Heart J.
71
,
284
(
2019
).
9.
S.
Nathaniel
,
World J. Cardiol.
2
,
135
(
2010
).
10.
R.-N.
Siliste
and
C.
Siliste
,
E-J. Cardiol. Pract.
18
, 12 (
2020
).
11.
F.
Sawaya
,
D.
Liff
,
J.
Stewart
,
S.
Lerakis
, and
V.
Babaliaros
,
Am. J. Med. Sci.
343
,
490
(
2012
).
12.
S. M.
Debbal
and
F.
Bereksi-Reguig
,
Appl. Math. Comput.
184
,
1041
(
2007
).
13.
C.
Ahlström
,
“Processing of the phonocardiographic signal–Methods for the intelligent stethoscope,” Licentiate thesis, Linköping University
,
2006
.
14.
I. R.
Hanna
and
M. E.
Silverman
,
Am. J. Cardiol.
90
,
259
(
2002
).
15.
D.
Sánchez Morillo
,
S.
Astorga Moreno
,
M. Á.
Fernández Granero
, and
A.
León Jiménez
,
Comput. Biol. Med.
43
,
914
(
2013
).
16.
A.
Renjini
,
V.
Raj
,
M. S.
Swapna
,
S.
Sreejyothi
, and
S.
Sankararaman
,
Chaos
30
,
113122
(
2020
).
17.
S. M.
Debbal
and
F.
Bereksi-Reguig
,
Comput. Biol. Med.
38
,
263
(
2008
).
18.
M. S.
Swapna
,
A.
Renjini
,
V.
Raj
,
S.
Sreejyothi
, and
S.
Sankararaman
,
Phys. Eng. Sci. Med.
43
,
1339
(
2020
).
19.
M.
Rubinov
and
O.
Sporns
,
Neuroimage
52
,
1059
(
2010
).
20.
C. J.
Stam
and
J. C.
Reijneveld
,
Nonlinear Biomed. Phys.
1
,
3
(
2007
).
21.
A. S.
da Mata
,
Braz. J. Phys.
50
,
658
(
2020
).
22.
C.
Perez
and
R.
Germon
,
Automating Open Source Intelligence
, 1st ed. (
Elsevier
,
2016
), pp.
103
129
.
23.
C.
Sun
,
F.
Yang
,
C.
Wang
,
Z.
Wang
,
Y.
Zhang
,
D.
Ming
, and
J.
Du
,
Front. Hum. Neurosci.
12
,
1
(
2018
).
24.
H.
Yang
and
G.
Liu
,
Chaos
23
,
043116
(
2013
).
25.
F.
Jorge-Hernandez
,
Y. G.
Chimeno
,
B.
Garcia-Zapirain
,
A. C.
Zubizarreta
,
M. A. G.
Beldarrain
, and
B.
Fernandez-Ruanova
,
Biomed. Mater. Eng.
24
,
2979
(
2014
).
26.
V.
Raj
,
A.
Renjini
,
M. S.
Swapna
,
S.
Sreejyothi
, and
S.
Sankararaman
,
Chaos, Solitons Fractals
140
,
110246
(
2020
).
27.
S.
Sreejyothi
,
A.
Renjini
,
V.
Raj
,
M. N. S.
Swapna
, and
S. I.
Sankararaman
,
J. Biol. Phys.
47
,
103
(
2021
).
28.
M. S.
Ahmad
,
J.
Mir
,
M. O.
Ullah
,
M. L. U. R.
Shahid
, and
M. A.
Syed
,
Australas. Phys. Eng. Sci. Med.
42
,
733
(
2019
).
29.
I.
Maglogiannis
,
E.
Loukis
,
E.
Zafiropoulos
, and
A.
Stasis
,
Comput. Methods Programs Biomed.
95
,
47
(
2009
).
30.
I. G.
Maglogiannis
,
Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in Ehealth, Hci, Information Retrieval and Pervasive Technologies
(
IOS Press
,
Netherlands
,
2007
).
31.
M. S.
Swapna
,
S.
Sreejyothi
,
A.
Renjini
,
V.
Raj
, and
S.
Sankararaman
,
Eur. Phys. J. Plus
136
,
184
(
2021
).
32.
N.
Vandersickel
,
E.
Van Nieuwenhuyse
,
N.
Van Cleemput
,
J.
Goedgebeur
,
M.
El Haddad
,
J.
De Neve
,
A.
Demolder
,
T.
Strisciuglio
,
M.
Duytschaever
, and
A. V.
Panfilov
,
Front. Physiol.
10
,
1138
(
2019
).
33.
S.
Scarsoglio
,
F.
Cazzato
, and
L.
Ridolfi
,
Chaos
27
,
093107
(
2017
).
34.
C.
Ahlstrom
,
K.
Höglund
,
P.
Hult
,
J.
Häggström
,
C.
Kvart
, and
P.
Ask
,
Int. J. Biomed. Sci
1
, 1305 (
2006
).
35.
Yaseen
,
G.-Y.
Son
, and
S.
Kwon
,
Appl. Sci.
8
,
2344
(
2018
).
36.
B.-B.
Li
and
Z.-F.
Yuan
,
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
222
,
265
(
2008
).
37.
M. E. H.
Chowdhury
,
A.
Khandakar
,
K.
Alzoubi
,
S.
Mansoor
,
A. M.
Tahir
,
M. B. I.
Reaz
, and
N.
Al-Emadi
,
Sensors
19
,
2781
(
2019
).
38.
See http://www.med.umich.edu/lrc/psb/heartsounds/index.htm for “Michigan Heart Sound and Murmur database (MHSDB),” Univ. Michigan Heal. Syst. (2020).
39.
A. L.
Goldberger
,
L. A. N.
Amaral
,
L.
Glass
,
J. M.
Hausdorff
,
P. C.
Ivanov
,
R. G.
Mark
,
J. E.
Mietus
,
G. B.
Moody
,
C.-K.
Peng
, and
H. E.
Stanley
,
Circulation
101
,
e215
(
2000
).
40.
K. S.
Kumar
,
C. V. A.
Kumar
,
B.
George
,
G.
Renuka
, and
C.
Venugopal
,
J. Geophys. Res. Space Phys.
109
,
A02308
(
2004
).
41.
Y.
Li
,
H.
Cao
, and
Y.
Tan
,
AIP Adv.
1
,
012103
(
2011
).
42.
T. M. J.
Fruchterman
and
E. M.
Reingold
,
Software-Pract. Exp.
21
,
1129
(
1991
).
43.
X.
Shao
,
H.
Li
,
N.
Wang
, and
Q.
Zhang
,
Sensors (Switzerland)
15
,
26726
(
2015
).
44.
T. K.
Ho
, in
Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural Syntactic Pattern Recognition (SSPR)
(
Springer
,
1998
), pp.
640
648
.
45.
M.
Nabi
,
A.
Wahid
, and
P.
Kumar
,
Int. J. Adv. Res. Comput. Sci.
8
,
456
(
2017
).
46.
G. R.
Johnson
,
R. J.
Adolph
, and
D. J.
Campbell
,
J. Am. Coll. Cardiol.
1
,
1315
(
1983
).
47.
D.
Kim
and
M. E.
Tavel
,
Chest
124
,
1638
(
2003
).
You do not currently have access to this content.