The fundamental limits of the microwave noise performance of high electron-mobility transistors (HEMTs) are of scientific and practical interest for applications in radio astronomy and quantum computing. Self-heating at cryogenic temperatures has been reported to be a limiting mechanism for the noise, but cryogenic cooling strategies to mitigate it, for instance, using liquid cryogens, have not been evaluated. Here, we report microwave noise measurements of a packaged two-stage amplifier with GaAs metamorphic HEMTs immersed in normal and superfluid 4He baths and in vacuum from 1.6 to 80 K. We find that these liquid cryogens are unable to mitigate the thermal noise associated with self-heating. Considering this finding, we examine the implications for the lower bounds of cryogenic noise performance in HEMTs. Our analysis supports the general design principle for cryogenic HEMTs of maximizing gain at the lowest possible power.

1.
M.
Pospieszalski
,
IEEE Microw. Mag.
6
,
62
(
2005
).
2.
J. J.
Bautista
, “HEMT low-noise amplifiers,” in Low-Noise Systems in the Deep Space Network, Deep-Space Communications and Navigation Series, edited by M. S. Reid (Wiley, Hoboken, NJ, 2008), Chap. 5, pp. 195–254.
3.
M. W.
Pospieszalski
, “Extremely low-noise cryogenic amplifiers for radio astronomy: Past, present and future,” in 2018 22nd International Microwave and Radar Conference (MIKON) (IEEE, 2018), pp. 1–6.
4.
C.-C.
Chiong
,
Y.
Wang
,
K.-C.
Chang
, and
H.
Wang
,
IEEE Microw. Mag.
23
,
31
(
2022
).
5.
J.
Bautista
et al., “Cryogenic, X-band and Ka-band InP HEMT based LNAs for the deep space network,” in 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542) (IEEE, 2001), Vol. 2, pp. 2/829–2/842.
6.
J. M.
Chow
,
J. M.
Gambetta
,
E.
Magesan
,
D. W.
Abraham
,
A. W.
Cross
,
B. R.
Johnson
,
N. A.
Masluk
,
C. A.
Ryan
,
J. A.
Smolin
,
S. J.
Srinivasan
, and
M.
Steffen
,
Nat. Commun.
5
,
4015
(
2014
).
7.
J. M.
Hornibrook
et al.,
Phys. Rev. Appl.
3
,
024010
(
2015
).
8.
P.
Krantz
et al.,
Appl. Phys. Rev.
6
,
021318
(
2019
).
9.
E.
Cha
et al., “A 300-μW cryogenic HEMT LNA for quantum computing,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS) (IEEE, 2020), pp. 1299–1302, ISSN: 2576–7216.
10.
J. C.
Bardin
,
D. H.
Slichter
, and
D. J.
Reilly
,
IEEE J. Microw.
1
,
403
(
2021
).
11.
N.
Wadefalk
,
A.
Mellberg
,
I.
Angelov
,
M. E.
Barsky
,
S.
Bui
,
E.
Choumas
,
R. W.
Grundbacher
,
E. L.
Kollberg
,
R.
Lai
,
N.
Rorsman
,
P.
Starski
,
J.
Stenarson
,
D. C.
Streit
, and
H.
Zirath
,
IEEE Trans. Microw. Theory Tech.
51
,
1705
(
2003
).
12.
J.
Schleeh
,
G.
Alestig
,
J.
Halonen
,
A.
Malmros
,
B.
Nilsson
,
P. A.
Nilsson
,
J. P.
Starski
,
N.
Wadefalk
,
H.
Zirath
, and
J.
Grahn
,
IEEE Electron Device Lett.
33
,
664
(
2012
).
13.
A. H.
Akgiray
,
S.
Weinreb
,
R.
Leblanc
,
M.
Renvoise
,
P.
Frijlink
,
R.
Lai
, and
S.
Sarkozy
,
IEEE Trans. Microw. Theory Tech.
61
,
3285
(
2013
).
14.
M.
Varonen
et al., “A 75–116-GHz LNA with 23-K noise temperature at 108 GHz,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (IEEE, 2013), pp. 1–3, ISSN: 0149-645X.
15.
D.
Cuadrado-Calle
,
D.
George
,
G. A.
Fuller
,
K.
Cleary
,
L.
Samoska
,
P.
Kangaslahti
,
J. W.
Kooi
,
M.
Soria
,
M.
Varonen
,
R.
Lai
, and
X.
Mei
,
IEEE Trans. Microw. Theory Tech.
65
,
1589
(
2017
).
16.
E.
Cha
et al.,
IEEE Trans. Microw. Theory Tech.
66
,
4860
(
2018
).
17.
F.
Heinz
,
F.
Thome
,
A.
Leuther
, and
O.
Ambacher
, “Noise performance of sub-100-nm metamorphic HEMT technologies,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS) (IEEE, 2020), pp. 293–296, ISSN: 2576–7216.
18.
E.
Cha
, “InP high electron mobility transistors for cryogenic low noise and low power amplifiers,” Ph.D thesis (Chalmers University of Technology, Göteborg, 2020), ISBN: 9789179054076.
19.
J.
Schleeh
, “Cryogenic ultra-low noise inP high electron mobility transistors,” Ph.D thesis (Chalmers University of Technology, Göteborg, 2013).
20.
M. W.
Pospieszalski
,
IEEE Trans. Microw. Theory Tech.
37
,
1340
(
1989
).
21.
H.
Statz
,
H.
Haus
, and
R.
Pucel
,
IEEE Trans. Electron Devices
21
,
549
(
1974
).
22.
M. W.
Pospieszalski
, “On the limits of noise performance of field effect transistors,” in 2017 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2017), pp. 1953–1956.
23.
T.
Gonzalez
,
O. M.
Bulashenko
,
J.
Mateos
,
D.
Pardo
,
L.
Reggiani
, and
J. M.
Rubí
,
Semicond. Sci. Technol.
12
,
1053
(
1997
).
24.
I.
Esho
,
A. Y.
Choi
, and
A. J.
Minnich
,
J. Appl. Phys.
131
,
085111
(
2022
).
25.
J. J.
Bautista
and
E. M.
Long
,
Interplanet. Netw. Progr. Rep.
42–170
,
1
(
2007
).
26.
K. H. G.
Duh
,
W. F.
Kopp
,
P.
Ho
,
P.-C.
Chao
,
M.-Y.
Ko
,
P. M.
Smith
,
J. M.
Ballingall
,
J. J.
Bautista
, and
G. G.
Ortiz
,
IEEE Trans. Electron Devices
36
,
1528
(
1989
).
27.
J.
Schleeh
,
J.
Mateos
,
I.
de-la-Torre
,
N.
Wadefalk
,
P. A.
Nilsson
,
J.
Grahn
, and
A. J.
Minnich
,
Nat. Mater.
14
,
187
(
2015
).
28.
M. A.
McCulloch
,
J.
Grahn
,
S. J.
Melhuish
,
P.-A.
Nilsson
,
L.
Piccirillo
,
J.
Schleeh
, and
N.
Wadefalk
,
J. Astron. Telesc. Instrum. Syst.
3
,
014003
(
2017
).
29.
A. Y.
Choi
,
I.
Esho
,
B.
Gabritchidze
,
J.
Kooi
, and
A. J.
Minnich
,
J. Appl. Phys.
130
,
155107
(
2021
).
30.
A. Y.
Choi
, “Investigation of electronic fluctuations in semiconductor materials and devices through first-principles simulations and experiments in transistor amplifiers,” Ph.D thesis (California Institute of Technology, 2022).
31.
J. T.
Muhonen
,
M.
Meschke
, and
J. P.
Pekola
,
Rep. Prog. Phys.
75
,
046501
(
2012
).
32.
S. W.
Van Sciver
,
Helium Cryogenics
(
Springer
,
New York
,
2012
).
33.
S. W.
Van Sciver
, “Applications of superfluid helium in large-scale superconducting systems,” in Quantized Vortex Dynamics and Superfluid Turbulence, edited by R. Beig et al. (Springer, Berlin, 2001), Vol. 571, pp. 51–65.
34.
P.
Lebrun
,
L.
Serio
,
L.
Tavian
, and
R.
Weelderen
, “Cooling strings of superconducting devices below 2 K: The helium II bayonet heat exchanger,” in Advances in Cryogenic Engineering, edited by P. Kittel (Springer US, Boston, MA, 1998), pp. 419–426.
35.
B.
Baudouy
, in Proceedings of the CAS-CERN Accelerator School: Superconductivity for Accelerators (CERN, 2014).
36.
P.
Lebrun
, “Twenty-three kilometres of superfluid helium cryostats for the superconducting magnets of the large hadron collider (LHC),” in Cryostat Design, edited by J. Weisend II (Springer International Publishing, Cham, 2016), pp. 67–94.
37.
M.
Leffel
and
R.
Daniel
, “The Y factor technique for noise figure measurements,” Rohde & Schwarz Technical Application Note No. IMA178, version 5e (2021), https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma178/1MA178_5e_NoiseFigure.pdf.
38.
A. H.
Akgiray
, “New technologies driving decade-bandwidth radio astronomy: Quad-ridged flared horn and compound-semiconductor LNAs,” Ph.D thesis (California Institute of Technology, 2013).
39.
J. E.
Fernandez
,
Telecommun. Mission Oper. Progr. Rep.
135
,
1
(
1998
).
40.
A.
Soliman
,
A.
Janzen
, and
S.
Weinreb
, “Thermal modelling of coaxial line for cryogenic noise measurements,” in 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) (IEEE, Seoul, 2016), pp. 900–903.
41.
J. F.
Allen
and
A.
Misener
,
Proc. R. Soc. London, Ser. A
172
,
467
(
1939
).
42.
M.
Pospieszalski
et al., “Very low noise and low power operation of cryogenic AlInAs/GaInAs/InP HFET’s,” in 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 94CH3389-4) (IEEE, San Diego, CA, 1994), pp. 1345–1346.
43.
M. W.
Pospieszalski
, “On the dependence of FET noise model parameters on ambient temperature,” in 2017 IEEE Radio and Wireless Symposium (RWS) (IEEE, Phoenix, AZ, 2017), pp. 159–161.
45.
B.
Gabritchidze
et al., “Experimental characterization of temperature-dependent microwave noise of discrete HEMTs: Drain noise and real-space transfer,” in 2022 IEEE/MTT-S International Microwave Symposium (IMS) (IEEE, 2022).
46.
M.
Somerville
,
A.
Ernst
, and
J.
del Alamo
,
IEEE Trans. Electron Devices
47
,
922
(
2000
).
47.
R.
Webster
,
S.
Wu
, and
A.
Anwar
,
IEEE Electron Device Lett.
21
,
193
(
2000
).
48.
D.
Labuntzov
and
Y.
Ametistov
,
Cryogenics
19
,
401
(
1979
).

Supplementary Material

You do not currently have access to this content.