The fast-emerging diverse applications using a variety of magnetic/non-magnetic heterostructure ultra-thin films warrant the sensitive characterization of the electrical, optical, and magnetic properties of the interface. As a practical alternate to the conventional magneto-optic Kerr effect (MOKE) method, we propose and demonstrate the spin-Hall effect of the light (SHEL)-based MOKE method with competitive sensitivity and scope for further improvement. The SHEL-MOKE technique is a versatile surface characterization tool for studying materials’ magnetic and dielectric ordering, which are extracted from the variations to the phase-polarization characteristics of a focused beam of light reflected at the interface, as a function of the applied magnetic field. Using this technique, we measure the magnetic field dependent complex Kerr angle and the coercivity in ultra-thin films of permalloy (Py) and at molybdenum disulfide (MoS2)—permalloy (MSPy) hetero-structure interfaces. A comprehensive theoretical model and simulation data are provided to strengthen the potential of this simple non-invasive optical method. The theoretical model is subsequently applied to extract the optical conductivity of non-magnetic ultra-thin layers of MoS2.

1.
J. F.
Dayen
,
S. J.
Ray
,
O.
Karis
,
I. J.
Vera-Marun
, and
M. V.
Kamalakar
, “
Two-dimensional van der Waals spinterfaces and magnetic-interfaces
,”
Appl. Phys. Rev.
7
,
011303
(
2020
).
2.
F.
Hellman
,
A.
Hoffmann
,
Y.
Tserkovnyak
,
G. S.
Beach
,
E. E.
Fullerton
,
C.
Leighton
,
A. H.
Macdonald
,
D. C.
Ralph
,
D. A.
Arena
,
H. A.
Dürr
,
P.
Fischer
,
J.
Grollier
,
J. P.
Heremans
,
T.
Jungwirth
,
A. V.
Kimel
,
B.
Koopmans
,
I. N.
Krivorotov
,
S. J.
May
,
A. K.
Petford-Long
,
J. M.
Rondinelli
,
N.
Samarth
,
I. K.
Schuller
,
A. N.
Slavin
,
M. D.
Stiles
,
O.
Tchernyshyov
,
A.
Thiaville
, and
B. L.
Zink
, “
Interface-induced phenomena in magnetism
,”
Rev. Mod. Phys.
89
,
025006
(
2017
).
3.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
(
2004
).
4.
M.
Bonilla
,
S.
Kolekar
,
Y.
Ma
,
H. C.
Diaz
,
V.
Kalappattil
,
R.
Das
,
T.
Eggers
,
H. R.
Gutierrez
,
M. H.
Phan
, and
M.
Batzill
, “
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
,”
Nat. Nanotechnol.
13
,
289
293
(
2018
).
5.
O.
Kazakova
,
R.
Puttock
,
C.
Barton
,
H.
Corte-León
,
M.
Jaafar
,
V.
Neu
, and
A.
Asenjo
, “
Frontiers of magnetic force microscopy
,”
J. Appl. Phys.
125
,
060901
(
2019
).
6.
T.
Lan
,
B.
Ding
, and
B.
Liu
, “
Magneto-optic effect of two-dimensional materials and related applications
,”
Nano Select
1
,
298
310
(
2020
).
7.
B.
de Lima Bernardo
, “
Signal enhancement of magneto-optical Kerr effect measurements by weak value amplification
,”
Appl. Phys. B
117
,
1099
1105
(
2014
).
8.
X.
Qiu
,
X.
Zhou
,
D.
Hu
,
J.
Du
,
F.
Gao
,
Z.
Zhang
, and
H.
Luo
, “
Determination of magneto-optical constant of Fe films with weak measurements
,”
Appl. Phys. Lett.
105
,
131111
(
2014
).
9.
Q.
Wang
,
T.
Li
,
L.
Luo
,
Y.
He
,
X.
Liu
,
Z.
Li
,
Z.
Zhang
, and
J.
Du
, “
Measurement of hysteresis loop based on weak measurement
,”
Opt. Lett.
45
,
1075
1078
(
2020
).
10.
T.
Li
,
Q.
Wang
,
A.
Taallah
,
S.
Zhang
,
T.
Yu
, and
Z.
Zhang
, “
Measurement of the magnetic properties of thin films based on the spin Hall effect of light
,”
Opt. Express
28
,
29086
29097
(
2020
).
11.
Y.
He
,
L.
Luo
,
L.
Xie
,
J.
Shao
,
Y.
Liu
,
J.
You
,
Y.
Ye
, and
Z.
Zhang
, “
Detection of magneto-optical Kerr signals via weak measurement with frequency pointer
,”
Opt. Lett.
46
,
4140
4143
(
2021
).
12.
J.
Li
,
T.
Tang
,
L. I.
Luo
,
J.
Shen
,
C.
Li
,
J.
Qin
, and
L.
Bi
, “
Weak measurement of the magneto-optical spin Hall effect of light
,”
Photonics Res.
7
,
1014
1018
(
2019
).
13.
O.
Hosten
and
P.
Kwiat
, “
Observation of the spin Hall effect of light via weak measurements
,”
Science
319
,
787
790
(
2008
).
14.
X.
Ling
,
X.
Zhou
,
K.
Huang
,
Y.
Liu
,
C. W.
Qiu
,
H.
Luo
, and
S.
Wen
, “
Recent advances in the spin Hall effect of light
,”
Rep. Prog. Phys.
80
,
066401
(
2017
).
15.
Y.
Aharonov
,
D. Z.
Albert
, and
L.
Vaidman
, “
How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100
,”
Phys. Rev. Lett.
60
,
1351
(
1988
).
16.
X.
Yin
,
Z.
Ye
,
J.
Rho
,
Y.
Wang
, and
X.
Zhang
, “
Photonic spin Hall effect at metasurfaces
,”
Science
339
,
1405
1407
(
2013
).
17.
Y.
Qin
,
Y.
Li
,
H.
He
, and
Q.
Gong
, “
Measurement of spin Hall effect of reflected light
,”
Opt. Lett.
34
,
2551
2553
(
2009
).
18.
M.
Onoda
,
S.
Murakami
, and
N.
Nagaosa
, “
Hall effect of light
,”
Phys. Rev. Lett.
93
,
083901
(
2004
).
19.
S.
Chen
,
X.
Ling
,
W.
Shu
,
H.
Luo
, and
S.
Wen
, “
Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect
,”
Phys. Rev. Appl.
10
,
14057
(
2020
).
20.
X.
Zhou
,
L.
Sheng
, and
X.
Ling
, “
Photonic spin Hall effect enabled refractive index sensor using weak measurements
,”
Sci. Rep.
8
,
1
8
(
2018
).
21.
K. R.
Sahoo
,
T. P.
Chakravarthy
,
R.
Sharma
,
S.
Bawari
,
S.
Mundlia
,
S.
Sasmal
,
K. V.
Raman
,
T. N.
Narayanan
, and
N. K.
Viswanathan
, “
Probing proximity-tailored high spin–orbit coupling in 2D materials
,”
Adv. Quantum Technol.
3
,
2000042
(
2020
).
22.
M. Y.
Yin
,
X. C.
Wang
,
W. B.
Mi
, and
B. H.
Yang
, “
First principles prediction on the interfaces of Fe/MoS2, Co/MoS2 and Fe3O4/MoS2
,”
Comput. Mater. Sci.
99
,
326
335
(
2015
).
23.
R.
Bansal
,
A.
Kumar
,
N.
Chowdhury
,
N.
Sisodia
,
A.
Barvat
,
A.
Dogra
,
P.
Pal
, and
P. K.
Muduli
, “
Extrinsic spin-orbit coupling induced enhanced spin pumping in few-layer MoS2/Py
,”
J. Magn. Magn. Mater.
476
,
337
341
(
2019
).
24.
Z. Q.
Qiu
and
S. D.
Bader
, “
Surface magneto-optic Kerr effect
,”
Rev. Sci. Instrum.
71
,
1243
(
2000
).
25.
Z. J.
Yang
and
M. R.
Scheinfein
, “
Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism
,”
J. Appl. Phys.
74
,
6810
(
1998
).
26.
K. Y.
Bliokh
and
Y. P.
Bliokh
, “
Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet
,”
Phys. Rev. E
75
,
066609
(
2007
).
27.
H.
Luo
,
X.
Ling
,
X.
Zhou
,
W.
Shu
,
S.
Wen
, and
D.
Fan
, “
Enhancing or suppressing the spin Hall effect of light in layered nanostructures
,”
Phys. Rev. A
84
,
033801
(
2011
).
28.
K. Y.
Bliokh
and
A.
Aiello
, “
Goos–Hänchen and Imbert–Fedorov beam shifts: An overview
,”
J. Opt.
15
,
014001
(
2013
).
29.
J.
Zak
,
E. R.
Moog
,
C.
Liu
, and
S. D.
Bader
, “
Universal approach to magneto-optics
,”
J. Magn. Magn. Mater.
89
,
107
123
(
1990
).
30.
M. M.
Pan
,
Y.
Li
,
J. L.
Ren
,
B.
Wang
,
Y. F.
Xiao
,
H.
Yang
, and
Q.
Gong
, “
Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster’s angle
,”
Appl. Phys. Lett.
103
,
071106
(
2013
).
31.
Y.
Qin
,
Y.
Li
,
X.
Feng
,
Y.-F.
Xiao
,
H.
Yang
, and
Q.
Gong
, “
Observation of the in-plane spin separation of light
,”
Opt. Express
19
,
9636
9645
(
2011
).
32.
A.
Aiello
and
J. P.
Woerdman
, “
Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts
,”
Opt. Lett.
33
,
1437
1439
(
2008
).
33.
A.
Aiello
and
H.
Woerdman
, “The reflection of a Maxwell-Gaussian beam by a planar surface,” arXiv:0710.1643 (2007).
34.
X.
Zhou
,
X.
Li
,
H.
Luo
, and
S.
Wen
, “
Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect
,”
Appl. Phys. Lett.
104
,
051130
(
2014
).
35.
R.
Sharma
,
K. R.
Sahoo
,
P. K.
Rastogi
,
R. K.
Biroju
,
W.
Theis
, and
T. N.
Narayanan
, “
On the synthesis of morphology-controlled transition metal dichalcogenides via chemical vapor deposition for electrochemical hydrogen generation
,”
Phys. Status Solidi (RRL)
13
,
1900257
(
2019
).
36.
S. K.
Mallik
,
S.
Sahoo
,
M. C.
Sahu
,
S. K.
Gupta
,
S. P.
Dash
,
R.
Ahuja
, and
S.
Sahoo
, “
Salt-assisted growth of monolayer MoS2 for high-performance hysteresis-free field-effect transistor
,”
J. Appl. Phys.
129
,
145106
(
2021
).
37.
E. C.
Ahn
, “
2D materials for spintronic devices
,”
npj 2D Mater. Appl.
4
,
1
14
(
2020
).
38.
Y.
Li
,
A.
Chernikov
,
X.
Zhang
,
A.
Rigosi
,
H. M.
Hill
,
A. M.
van der Zande
,
D. A.
Chenet
,
E.-M.
Shih
,
J.
Hone
, and
T. F.
Heinz
, “
Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2
,”
Phys. Rev. B
90
,
205422
(
2014
).
39.
C.
Hsu
,
R.
Frisenda
,
R.
Schmidt
,
A.
Arora
,
S. M.
de Vasconcellos
,
R.
Bratschitsch
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
, “
Thickness-dependent refractive index of 1l, 2l and 3l MoS2, MoSe2, WS2, and WSe2
,”
Adv. Opt. Mater.
7
,
1900239
(
2019
).
40.
Y. V.
Morozov
and
M.
Kuno
, “
Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2
,”
Appl. Phys. Lett.
107
,
083103
(
2015
).
41.
G.
Jayaswal
,
Z.
Dai
,
X.
Zhang
,
M.
Bagnarol
,
A.
Martucci
, and
M.
Merano
, “
Measurement of the surface susceptibility and the surface conductivity of atomically thin MoS2 by spectroscopic ellipsometry
,”
Opt. Lett.
43
,
703
706
(
2018
).
42.
J. D.
Elliott
,
Z.
Xu
,
P.
Umari
,
G.
Jayaswal
,
M.
Chen
,
X.
Zhang
,
A.
Martucci
,
M.
Marsili
, and
M.
Merano
, “
Surface susceptibility and conductivity of MoS2 and WSe2 monolayers: A first-principles and ellipsometry characterization
,”
Phys. Rev. B
101
,
045414
(
2020
).

Supplementary Material

You do not currently have access to this content.