Nitride ceramics have been investigated for different applications in the nuclear industry, such as space nuclear power, fusion reactor diagnostics and plasma heating, inert matrix fuels, and accident tolerant fuels. Although thermal conductivity remains one of the most important properties to track following irradiation, traditional techniques such as laser flash and xenon flash are limited to bulk sample characterization, which requires lengthy and cost-consuming neutron irradiation. This work used spatial domain thermoreflectance (SDTR) for the micrometer-scale measurement of thermal conductivity in 15 MeV Ni ion-irradiated silicon nitride and zirconium nitride from 1 to 50 dpa and 300 to 700 °C. The SDTR-measured unirradiated thermal conductivity was found to be consistent with the published data on bulk samples. Electrically conductive ZrN exhibits modest reduction after irradiation which is minimal at the highest irradiation temperatures. In electrically insulating Si3N4, the reduction is more significant and unlike ZrN, the reduction remains significant even at a higher irradiation temperature. The thermal resistance evolution following irradiation was compared with lattice swelling, which was determined using grazing incidence x-ray diffraction, and radiation-induced defects were observed using transmission electron microscopy. A saturation value was observed between 15 and 50 dpa for thermal conductivity degradation in both nitride ceramics and a direct correlation with high-temperature defect recombination was observed, as well as the potential presence of additional carrier scattering mechanisms.

1.
2.
P. G.
Klemens
,
Solid State Physics
(
Elsevier
,
1958
), Vol. 7, p.
1
.
3.
G. A.
Slack
,
J. Phys. Chem. Solids
34
,
321
(
1973
).
4.
N. P.
Padture
,
M.
Gell
, and
E. H.
Jordan
,
Science
296
,
280
(
2002
).
5.
D. H.
Hurley
,
A.
El-Azab
,
M. S.
Bryan
,
M. W. D.
Cooper
,
C. A.
Dennett
,
K.
Gofryk
,
L.
He
,
M.
Khafizov
,
G. H.
Lander
,
M. E.
Manley
,
J. M.
Mann
,
C. A.
Marianetti
,
K.
Rickert
,
F. A.
Selim
,
M. R.
Tonks
, and
J. P.
Wharry
,
Chem. Rev.
122
,
3711
(
2022
).
6.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
,
Phys. Rev. B
46
,
6131
(
1992
).
7.
K. W.
Schlichting
,
N. P.
Padture
, and
P. G.
Klemens
,
J. Mater. Sci.
36
,
3003
(
2001
).
8.
G. F.
Hurley
and
J. M.
Bunch
,
Am. Ceram. Soc. Bull.
59
,
456
(
1980
).
9.
M.
Akiyoshi
,
T.
Yano
,
Y.
Tachi
, and
H.
Nakano
,
J. Nucl. Mater.
367-370
,
1023
(
2007
).
10.
D. P.
White
,
J. Appl. Phys.
73
,
2254
(
1993
).
11.
C.
Uher
and
D. T.
Morelli
,
J. Appl. Phys.
76
,
1515
(
1994
).
12.
G.
Berna
,
G.
Beyer
,
K.
Davis
, and
D.
Lanning
, “
FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup
,”
1997
.
13.
P.
Van Uffelen
,
J.
Hales
,
W.
Li
,
G.
Rossiter
, and
R.
Williamson
,
J. Nucl. Mater.
516
,
373
412
(
2019
).
14.
R. L.
Williamson
,
J. D.
Hales
,
S. R.
Novascone
,
M. R.
Tonks
,
D. R.
Gaston
,
C. J.
Permann
,
D.
Andrs
, and
R. C.
Martineau
,
J. Nucl. Mater.
423
,
149
(
2012
).
15.
R. L.
Williamson
,
J. D.
Hales
,
S. R.
Novascone
,
G.
Pastore
,
K. A.
Gamble
,
B. W.
Spencer
,
W.
Jiang
,
S. A.
Pitts
,
A.
Casagranda
, D. Schwen, A. X. Zabriskie, A. Toptan, R. Gardner, C. Matthews, W. Liu, and H. Chen,
Nucl. Technol.
207
,
954
(
2021
).
16.
C.
Ronchi
,
M.
Sheindlin
,
D.
Staicu
, and
M.
Kinoshita
,
J. Nucl. Mater.
327
,
58
(
2004
).
17.
L. L.
Snead
,
S. J.
Zinkle
, and
D. P.
White
,
J. Nucl. Mater.
340
,
187
(
2005
).
18.
A.
Cezairliyan
,
T.
Baba
, and
R.
Taylor
,
Int. J. Thermophys.
15
,
317
(
1994
).
19.
C. A.
Dennett
,
P.
Cao
,
S. E.
Ferry
,
A.
Vega-Flick
,
A. A.
Maznev
,
K. A.
Nelson
,
A. G.
Every
, and
M. P.
Short
,
Phys. Rev. B
94
,
214106
(
2016
).
20.
F.
Hofmann
,
M. R.
Short
, and
C. A.
Dennett
,
MRS Bull.
44
,
392
(
2019
).
21.
E.
Dechaumphai
,
J. L.
Barton
,
J. R.
Tesmer
,
J.
Moon
,
Y.
Wang
,
G. R.
Tynan
,
R. P.
Doerner
, and
R.
Chen
,
J. Nucl. Mater.
455
,
56
(
2014
).
22.
R.
Cheaito
,
C. S.
Gorham
,
A.
Misra
,
K.
Hattar
, and
P. E.
Hopkins
,
J. Mater. Res.
30
,
1403
(
2015
).
23.
L.
David
,
S.
Gomès
,
G.
Carlot
,
J. P.
Roger
,
D.
Fournier
,
C.
Valot
, and
M.
Raynaud
,
J. Phys. D: Appl. Phys.
41
,
035502
(
2008
).
24.
M.
Khafizov
,
J.
Pakarinen
,
L.
He
, and
D. H.
Hurley
,
J. Am. Ceram. Soc.
102
,
7533
(
2019
).
25.
M.
Khafizov
,
M. F.
Riyad
,
Y.
Wang
,
J.
Pakarinen
,
L.
He
,
T.
Yao
,
A.
El-Azab
, and
D.
Hurley
,
Acta Mater.
193
,
61
(
2020
).
26.
M.
Khafizov
,
V.
Chauhan
,
Y.
Wang
,
F.
Riyad
,
N.
Hang
, and
D. H.
Hurley
,
J. Mater. Res.
32
,
204
(
2017
).
27.
M.
Khafizov
,
C.
Yablinsky
,
T. R.
Allen
, and
D. H.
Hurley
,
Nucl. Instrum. Methods Phys. Res., Sect. B
325
,
11
(
2014
).
28.
S.
Qu
,
Y.
Li
,
Z.
Wang
,
Y.
Jia
,
C.
Li
,
B.
Xu
,
W.
Chen
,
S.
Bai
,
Z.
Huang
,
Z.
Tang
, and
W.
Liu
,
J. Nucl. Mater.
484
,
382
(
2017
).
29.
M. F.
Riyad
,
V.
Chauhan
, and
M.
Khafizov
,
J. Nucl. Mater.
509
,
134
(
2018
).
30.
P. B.
Weisensee
,
J. P.
Feser
, and
D. G.
Cahill
,
J. Nucl. Mater.
443
,
212
(
2013
).
31.
S. M.
McDeavitt
,
J.
Ragusa
,
S. T.
Revankar
,
A. A.
Solomon
, and
J.
Malone
,
Nucl. Eng. Int.
56
,
40
(
2011
).
32.
A.
Reza
,
G.
He
,
C. A.
Dennett
,
H.
Yu
,
K.
Mizohata
, and
F.
Hofmann
,
Acta Mater.
232
,
117926
(
2022
).
33.
V. S.
Chauhan
,
J.
Pakarinen
,
T.
Yao
,
L.
He
,
D. H.
Hurley
, and
M.
Khafizov
,
Materialia
15
,
101019
(
2021
).
34.
S. E.
Ferry
,
C. A.
Dennett
,
K. B.
Woller
, and
M. P.
Short
,
J. Nucl. Mater.
523
,
378
(
2019
).
35.
A. J.
Terricabras
,
L.
Wang
,
A. M.
Raftery
,
A. T.
Nelson
, and
S. J.
Zinkle
,
J. Nucl. Mater.
563
,
153643
(
2022
).
36.
S. J.
Zinkle
and
L. L.
Snead
,
Scr. Mater.
143
,
154
(
2018
).
37.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
38.
P.
Jiang
,
X.
Qian
, and
R.
Yang
,
J. Appl. Phys.
124
,
161103
(
2018
).
39.
C.
Xing
,
C.
Jensen
,
Z.
Hua
,
H.
Ban
,
D. H.
Hurley
,
M.
Khafizov
, and
J. R.
Kennedy
,
J. Appl. Phys.
112
,
103105
(
2012
).
40.
D. H.
Hurley
,
R. S.
Schley
,
M.
Khafizov
, and
B. L.
Wendt
,
Rev. Sci. Instrum.
86
,
123901
(
2015
).
41.
M.
Khafizov
and
D. H.
Hurley
,
J. Appl. Phys.
110
,
083525
(
2011
).
42.
J.
Pakarinen
,
M.
Khafizov
,
L.
He
,
C.
Wetteland
,
J.
Gan
,
A. T.
Nelson
,
D. H.
Hurley
,
A.
El-Azab
, and
T. R.
Allen
,
J. Nucl. Mater.
454
,
283
(
2014
).
43.
J.
Adachi
,
K.
Kurosaki
,
M.
Uno
, and
S.
Yamanaka
,
J. Alloys Compd.
432
,
7
(
2007
).
44.
45.
I.
Fuke
,
V.
Prabhu
, and
S.
Baek
,
J. Manuf. Process.
7
,
140
(
2005
).
46.
S.
Middlemas
,
Z.
Hua
,
V.
Chauhan
,
W. T.
Yorgason
,
R.
Schley
,
A.
Khanolkar
,
M.
Khafizov
, and
D.
Hurley
,
J. Nucl. Mater.
528
,
151842
(
2020
).
47.
K. A.
Terrani
,
B. C.
Jolly
, and
J. M.
Harp
,
J. Nucl. Mater.
531
,
152034
(
2020
).
48.
A. M.
Raftery
,
R. L.
Seibert
,
D. R.
Brown
,
M. P.
Trammell
,
A. T.
Nelson
, and
K. A.
Terrani
,
Nucl. Technol.
207
,
815
(
2021
).
49.
J. K.
Watkins
,
A.
Gonzales
,
A. R.
Wagner
,
E. S.
Sooby
, and
B. J.
Jaques
,
J. Nucl. Mater.
553
,
153048
(
2021
).
50.
E. S.
Sooby
,
B. A.
Brigham
,
G.
Robles
,
J. T.
White
,
S. W.
Paisner
,
E.
Kardoulaki
, and
B.
Williams
,
J. Nucl. Mater.
560
,
153487
(
2022
).
51.
K.
Yang
,
E.
Kardoulaki
,
D.
Zhao
,
A.
Broussard
,
K.
Metzger
,
J. T.
White
,
M. R.
Sivack
,
K. J.
McClellan
,
E. J.
Lahoda
, and
J.
Lian
,
J. Nucl. Mater.
557
,
153272
(
2021
).
52.
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
John Wiley & Sons
,
2004
).
53.
S. S.
Parker
,
J. T.
White
,
P.
Hosemann
, and
A. T.
Nelson
,
J. Nucl. Mater.
526
,
151760
(
2019
).
54.
B.
Szpunar
,
J. I.
Ranasinghe
,
J. A.
Szpunar
, and
L.
Malakkal
,
J. Phys. Chem. Solids
165
,
110647
(
2022
).
55.
N. W. M. N. D.
Ashcroft
,
Solid State Physics
(
Holt, Rinehart and Winston
,
New York
,
1976
).
56.
P. G.
Klemens
and
R. K.
Williams
,
Int. Met. Rev.
31
,
197
(
1986
).
57.
P. G.
Klemens
,
Can. J. Phys.
35
,
441
(
1957
).
58.
J.-P.
Crocombette
and
L.
Proville
,
Appl. Phys. Lett.
98
,
191905
(
2011
).
59.
J.
Peng
,
W. R.
Deskins
,
L.
Malakkal
, and
A.
El-Azab
,
J. Appl. Phys.
130
,
185101
(
2021
).
60.
J.
Adachi
,
K.
Kurosaki
,
M.
Uno
, and
S.
Yamanaka
,
J. Alloys Compd.
399
,
242
(
2005
).
61.
G. V.
Samsonov
,
Nemetallicheskie Nitridy
(
Metallurgiia
,
1969
).
62.
D. S.
Neel
,
C. D.
Pears
, and
S.
Oglesby
, Jr.
, “
The thermal properties of thirteen solid materials to 5000 F for their destruction temperatures
1960
.
63.
J.
Hedge
,
C.
Kostenko
, and
J.
Lang
, “
Thermal properties of refractory alloys
,”
1963
.
64.
W.
Lengauer
,
S.
Binder
,
K.
Aigner
,
P.
Ettmayer
,
A.
Guillou
,
J.
Debuigne
, and
G.
Groboth
,
J. Alloys Compd.
217
,
137
(
1995
).
65.
M.
Akiyoshi
,
I.
Takagi
,
T.
Yano
,
N.
Akasaka
, and
Y.
Tachi
,
Fusion Eng. Des.
81
,
321
(
2006
).
66.
M.
Akiyoshi
,
H.
Tsuchida
,
I.
Takagi
,
T.
Yoshiie
,
X.
Qiu
,
K.
Sato
, and
T.
Yano
,
J. Nucl. Sci. Technol.
49
,
595
(
2012
).
67.
M.
Akiyoshi
,
H.
Tsuchida
, and
T.
Yano
, in
Advances in Ceramics—Characterization, Raw Materials, Processing, Properties, Degradation and Healing
, edited by
C.
Sikalidis
(
InTechOpen
,
2011
), p.
39
.
68.
C.
Hazelton
,
J.
Rice
,
L. L.
Snead
, and
S. J.
Zinkle
,
J. Nucl. Mater.
253
,
190
(
1998
).
69.
A.
Rueanngoen
,
K.
Kanazawa
,
M.
Imai
,
K.
Yoshida
, and
T.
Yano
,
J. Nucl. Mater.
455
,
464
(
2014
).
70.
A.
Rueanngoen
,
M.
Imai
,
K.
Yoshida
, and
T.
Yano
,
Prog. Nucl. Energy
82
,
142
(
2015
).
71.
L. L.
Snead
,
Y.
Katoh
, and
S.
Connery
,
J. Nucl. Mater.
367-370
,
677
(
2007
).
72.
L. L.
Snead
and
S. J.
Zinkle
, in
Space Technology and Applications International Forum (STAIF 2005)
, edited by
M. S.
ElGenk
(
American Institute of Physics
,
Melville
,
2005
), Vol. 746, p.
768
.
73.
P. G.
Klemens
,
Phys. Rev.
119
,
507
(
1960
).
74.
S. J.
Zinkle
and
C.
Kinoshita
,
J. Nucl. Mater.
251
,
200
(
1997
).
You do not currently have access to this content.