We carried out atomic-scale observations of Mg-ion-implanted GaN by transmission electron microscopy (TEM) and atom probe tomography (APT) to clarify the crystallographic structures of extended defects and Mg agglomerations that form during post-implantation annealing. The complementary TEM and APT analyses have shown that Mg atoms agglomerate at dislocations that bound extended defects. The concentration of Mg is higher at the dislocations with a larger Burgers vector. This indicates that Mg agglomeration is caused by the pressure at the dislocations. Mg concentration in highly Mg-rich regions is 1 at. %, which exceeds the solubility limit of Mg in GaN. We investigated isothermal and isochronal evolution of the defects by TEM, cathodoluminescence analysis, and positron annihilation spectroscopy. The results indicated that the intensity of donor–acceptor pair emission increases with the annealing temperature and duration and reaches a maximum after elimination of the extended defects with highly Mg-rich regions. These results strongly suggest that such extended defects reduce the acceptor formation and that they as well as the previously reported compensating centers, such as N-related vacancies, can inhibit the formation of p-type GaN. The mechanism by which the extended defects reduce acceptor formation is discussed.

1.
S.
Chowdhury
,
Phys. Status Solidi
212
,
1066
(
2015
).
2.
I. C.
Kizilyalli
,
A. P.
Edwards
,
O.
Aktas
,
T.
Prunty
, and
D.
Bour
,
IEEE Trans. Electron Devices
62
,
414
(
2015
).
3.
B. N.
Feigelson
,
T. J.
Anderson
,
M.
Abraham
,
J. A.
Freitas
,
J. K.
Hite
,
C. R.
Eddy
, and
F. J.
Kub
,
J. Cryst. Growth
350
,
21
(
2012
).
4.
T.
Oikawa
,
Y.
Saijo
,
S.
Kato
,
T.
Mishima
, and
T.
Nakamura
,
Nucl. Instrum. Methods Phys. Res., Sect. B
365
,
168
(
2015
).
5.
T. J.
Anderson
,
J. D.
Greenlee
,
B. N.
Feigelson
,
J. K.
Hite
,
F. J.
Kub
, and
K. D.
Hobart
,
ECS J. Solid State Sci. Technol.
5
,
Q176
(
2016
).
6.
T.
Niwa
,
T.
Fujii
, and
T.
Oka
,
Appl. Phys. Express
10
,
091002
(
2017
).
7.
R.
Tanaka
,
S.
Takashima
,
K.
Ueno
,
H.
Matsuyama
,
M.
Edo
, and
K.
Nakagawa
,
Appl. Phys. Express
12
,
054001
(
2019
).
8.
H.
Sakurai
,
M.
Omori
,
S.
Yamada
,
Y.
Furukawa
,
H.
Suzuki
,
T.
Narita
,
K.
Kataoka
,
M.
Horita
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
,
Appl. Phys. Lett.
115
,
142104
(
2019
).
9.
K.
Kataoka
,
T.
Narita
,
H.
Iguchi
,
T.
Uesugi
, and
T.
Kachi
,
Phys. Status Solidi
255
,
1700379
(
2018
).
10.
K.
Shima
,
H.
Iguchi
,
T.
Narita
,
K.
Kataoka
,
K.
Kojima
,
A.
Uedono
, and
S. F.
Chichibu
,
Appl. Phys. Lett.
113
,
191901
(
2018
).
11.
T.
Narita
,
H.
Yoshida
,
K.
Tomita
,
K.
Kataoka
,
H.
Sakurai
,
M.
Horita
,
M.
Bockowski
,
N.
Ikarashi
,
J.
Suda
,
T.
Kachi
, and
Y.
Tokuda
,
J. Appl. Phys.
128
,
090901
(
2020
).
12.
M.
Horita
,
S.
Takashima
,
R.
Tanaka
,
H.
Matsuyama
,
K.
Ueno
,
M.
Edo
,
T.
Takahashi
,
M.
Shimizu
, and
J.
Suda
,
Jpn. J. Appl. Phys.
56
,
031001
(
2017
).
13.
K.
Hirukawa
,
K.
Sumida
,
H.
Sakurai
,
H.
Fujikura
,
M.
Horita
,
Y.
Otoki
,
K.
Sierakowski
,
M.
Bockowski
,
T.
Kachi
, and
J.
Suda
,
Appl. Phys. Express
14
,
056501
(
2021
).
14.
Z.
Liliental-Weber
,
M.
Benamara
,
W.
Swider
,
J.
Washburn
,
I.
Grzegory
,
S.
Porowski
,
D. J. H.
Lambert
,
C. J.
Eiting
, and
R. D.
Dupuis
,
Appl. Phys. Lett.
75
,
4159
(
1999
).
15.
L. T.
Romano
,
J. E.
Northrup
,
A. J.
Ptak
, and
T. H.
Myers
,
Appl. Phys. Lett.
77
,
2479
(
2000
).
16.
P.
Vennéguès
,
M.
Leroux
,
S.
Dalmasso
,
M.
Benaissa
,
P.
De Mierry
,
P.
Lorenzini
,
B.
Damilano
,
B.
Beaumont
,
J.
Massies
, and
P.
Gibart
,
Phys. Rev. B
68
,
235214
(
2003
).
17.
S.
Pezzagna
,
P.
Vennéguès
,
N.
Grandjean
, and
J.
Massies
,
J. Cryst. Growth
269
,
249
(
2004
).
18.
D. S.
Green
,
E.
Haus
,
F.
Wu
,
L.
Chen
,
U. K.
Mishra
, and
J. S.
Speck
,
J. Vac. Sci. Technol. B
21
,
1804
(
2003
).
19.
Z.
Liliental-Weber
,
T.
Tomaszewicz
,
D.
Zakharov
,
J.
Jasinski
, and
M. A.
O’Keefe
,
Phys. Rev. Lett.
93
,
206102
(
2004
).
20.
T.
Remmele
,
M.
Albrecht
,
K.
Irmscher
,
R.
Fornari
, and
M.
Straburg
,
Appl. Phys. Lett.
99
,
141913
(
2011
).
21.
T.
Narita
,
N.
Ikarashi
,
K.
Tomita
,
K.
Kataoka
, and
T.
Kachi
J. Appl. Phys.
124
,
165706
(
2018
).
22.
K.
Iwata
,
T.
Narita
,
M.
Nagao
,
K.
Tomita
,
K.
Kataoka
,
T.
Kachi
, and
N.
Ikarashi
,
Appl. Phys. Express
12
,
031004
(
2019
).
23.
K.
Iwata
,
H.
Sakurai
,
S.
Arai
,
T.
Nakashima
,
T.
Narita
,
K.
Kataoka
,
M.
Bockowski
,
M.
Nagao
,
J.
Suda
,
T.
Kachi
, and
N.
Ikarashi
,
J. Appl. Phys.
127
,
105106
(
2020
).
24.
T.
Nakashima
,
E.
Kano
,
K.
Kataoka
,
S.
Arai
,
H.
Sakurai
,
T.
Narita
,
K.
Sierakowski
,
M.
Bockowski
,
M.
Nagao
,
J.
Suda
,
T.
Kachi
, and
N.
Ikarashi
,
Appl. Phys. Express
14
,
011005
(
2021
).
25.
S. E.
Bennett
,
R. M.
Ulfig
,
P. H.
Clifton
,
M. J.
Kappers
,
J. S.
Barnard
,
C. J.
Humphreys
, and
R. A.
Oliver
,
Ultramicroscopy
111
,
207
(
2011
).
26.
S.
Usami
,
N.
Mayama
,
K.
Toda
,
A.
Tanaka
,
M.
Deki
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Appl. Phys. Lett.
114
,
232105
(
2019
).
27.
A.
Kumar
,
J.
Uzuhashi
,
T.
Ohkubo
,
R.
Tanaka
,
S.
Takashima
,
M.
Edo
, and
K.
Hono
,
J. Appl. Phys.
126
, 235704 (
2019
).
28.
L.
Amichi
,
I.
Mouton
,
E.
Di Russo
,
V.
Boureau
,
F.
Barbier
,
A.
Dussaigne
,
A.
Grenier
,
P. H.
Jouneau
,
C.
Bougerol
, and
D.
Cooper
,
J. Appl. Phys.
127
,
065702
(
2020
).
29.
T.
Nakano
,
Y.
Harashima
,
K.
Chokawa
,
K.
Shiraishi
,
A.
Oshiyama
,
Y.
Kangawa
,
S.
Usami
,
N.
Mayama
,
K.
Toda
,
A.
Tanaka
,
Y.
Honda
, and
H.
Amano
,
Appl. Phys. Lett.
117
,
012105
(
2020
).
30.
O. G.
Licata
,
S.
Broderick
,
E.
Rocco
,
F.
Shahedipour-Sandvik
, and
B.
Mazumder
,
Appl. Phys. Lett.
119
,
032102
(
2021
).
31.
J.
Uzuhashi
,
J.
Chen
,
A.
Kumar
,
W.
Yi
,
T.
Ohkubo
,
R.
Tanaka
,
S.
Takashima
,
M.
Edo
,
K.
Sierakowski
,
M.
Bockowski
,
H.
Sakurai
,
T.
Kachi
,
T.
Sekiguchi
, and
K.
Hono
,
J. Appl. Phys.
131
,
185701
(
2022
).
32.
B.
Monemar
,
P. P.
Paskov
,
G.
Pozina
,
C.
Hemmingsson
,
J. P.
Bergman
,
T.
Kawashima
,
H.
Amano
,
I.
Akasaki
,
T.
Paskova
,
S.
Figge
,
D.
Hommel
, and
A.
Usui
,
Phys. Rev. Lett.
102
,
235501
(
2009
).
33.
G.
Pozina
,
P. P.
Paskov
,
J. P.
Bergman
,
C.
Hemmingsson
,
L.
Hultman
,
B.
Monemar
,
H.
Amano
,
I.
Akasaki
, and
A.
Usui
,
Appl. Phys. Lett.
91
,
221901
(
2007
).
34.
M. A.
Reshchikov
,
D. O.
Demchenko
,
J. D.
McNamara
,
S.
Fernández-Garrido
, and
R.
Calarco
,
Phys. Rev. B
90
,
035207
(
2014
).
35.
K.
Kojima
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
M.
Shimizu
,
T.
Takahashi
,
S.
Ishibashi
,
A.
Uedono
, and
S. F.
Chichibu
,
Appl. Phys. Express
10
,
061002
(
2017
).
36.
A.
Uedono
,
H.
Iguchi
,
T.
Narita
,
K.
Kataoka
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
K.
Shima
,
K.
Kojima
,
S. F.
Chichibu
, and
S.
Ishibashi
,
Phys. Status Solidi
256
,
1900104
(
2019
).
37.
A.
Uedono
,
H.
Sakurai
,
T.
Narita
,
K.
Sierakowski
,
M.
Bockowski
,
J.
Suda
,
S.
Ishibashi
,
S. F.
Chichibu
, and
T.
Kachi
,
Sci. Rep.
10
,
17349
(
2020
).
38.
F.
Tang
,
M. P.
Moody
,
T. L.
Martin
,
P. A. J.
Bagot
,
M. J.
Kappers
, and
R. A.
Oliver
,
Microsc. Microanal.
21
,
544
(
2015
).
39.
A.
Kumar
,
W.
Yi
,
J.
Uzuhashi
,
T.
Ohkubo
,
J.
Chen
,
T.
Sekiguchi
,
R.
Tanaka
,
S.
Takashima
,
M.
Edo
, and
K.
Hono
,
J. Appl. Phys.
128
,
065701
(
2020
).
40.
Q.
Yan
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
100
,
142110
(
2012
).
41.
F.
Tuomisto
and
I.
Makkonen
,
Rev. Mod. Phys.
85
,
1583
(
2013
).
42.
A.
Uedono
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
,
H.
Matsuyama
,
W.
Egger
,
T.
Koschine
,
C.
Hugenschmidt
,
M.
Dickmann
,
K.
Kojima
,
S. F.
Chichibu
, and
S.
Ishibashi
,
Phys. Status Solidi B
255
,
1700521
(
2018
).
43.
H.
Iguchi
,
T.
Narita
,
K.
Kataoka
,
M.
Kanechika
, and
A.
Uedono
,
J. Appl. Phys.
126
,
125102
(
2019
).
44.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
(
Butterworth-Heinemann
,
Oxford
,
2011
).
45.
K.
Suzuki
and
S.
Takeuchi
,
Philos. Mag. Lett.
79
,
423
(
1999
).
47.
K.
Thompson
,
P. L.
Flaitz
,
P.
Ronsheim
,
D. J.
Larson
, and
T. F.
Kelly
,
Science (80-.)
317
,
1370
(
2007
).
48.
S.
Duguay
,
T.
Philippe
,
F.
Cristiano
, and
D.
Blavette
,
Appl. Phys. Lett.
97
,
242104
(
2010
).
49.
D.
McLean
,
Grain Boundaries in Metals
(
Clarendon Press
,
London
,
1957
).
50.
Y.
Okamoto
,
M.
Saito
, and
A.
Oshiyama
,
Jpn. J. Appl. Phys
.
35
, L807 (
1996
).
51.
C. G.
Van De Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
52.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
108
,
156403
(
2012
).
53.
K.
Sumida
,
K.
Hirukawa
,
H.
Sakurai
,
K.
Sierakowski
,
M.
Horita
,
M.
Bockowski
,
T.
Kachi
, and
J.
Suda
,
Appl. Phys. Express
14
,
121004
(
2021
).
54.
S.
Limpijumnong
and
C.
Van de Walle
,
Phys. Rev. B
69
,
035207
(
2004
).
55.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Phys. Rev. B
93
,
245201
(
2016
).
56.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
57.
C.
Bonafos
,
D.
Mathiot
, and
A.
Claverie
,
J. Appl. Phys.
83
,
3008
(
1998
).
58.
R. E.
Smallman
and
A. H. W.
Ngan
,
Modern Physical Metallurgy
, 8th ed. (
Elsevier
,
2013
).
59.
H.
Sakurai
,
T.
Narita
,
M.
Omori
,
S.
Yamada
,
A.
Koura
,
M.
Iwinska
,
K.
Kataoka
,
M.
Horita
,
N.
Ikarashi
,
M.
Bockowski
,
J.
Suda
, and
T.
Kachi
,
Appl. Phys. Express
13
,
086501
(
2020
).
60.
D. P.
Bour
,
H. F.
Chung
,
W.
Götz
,
L.
Romano
,
B. S.
Krusor
,
D.
Hofstetter
,
S.
Rudaz
,
C. P.
Kuo
,
F. A.
Ponce
,
N. M.
Johnson
,
M. G.
Craford
, and
R. D.
Bringans
,
MRS Proc.
449
,
509
(
1996
).
61.
G.
Namkoong
,
E.
Trybus
,
K. K.
Lee
,
M.
Moseley
,
W. A.
Doolittle
, and
D. C.
Look
,
Appl. Phys. Lett.
93
,
172112
(
2008
).
62.
C. G.
Van De Walle
,
C.
Stampfl
, and
J.
Neugebauer
,
J. Cryst. Growth
189–190
,
505
(
1998
).
63.
Y.
Xin
,
E. M.
James
,
I.
Arslan
,
S.
Sivananthan
,
N. D.
Browning
,
S. J.
Pennycook
,
F.
Omnès
,
B.
Beaumont
,
J. P.
Faurie
, and
P.
Gibart
,
Appl. Phys. Lett.
76
,
466
(
2000
).
64.
S.
Lopatin
,
S. J.
Pennycook
,
J.
Narayan
, and
G.
Duscher
,
Appl. Phys. Lett.
81
,
2728
(
2002
).
65.
I.
Belabbas
,
P.
Ruterana
,
J.
Chen
, and
G.
Nouet
,
Philos. Mag.
86
,
2241
(
2006
).
66.
K.
Tillmann
,
L.
Houben
, and
A.
Thust
,
Philos. Mag.
86
,
4589
(
2006
).
You do not currently have access to this content.