Fluid-coupled Lamb waves (LWs) were proposed to facilitate the self-assembling of three-dimensional (3D) photonic crystals (PCs) in this work. Numerical models were constructed for proof-of-concept, and a fabrication set-up was developed for experimental demonstration. LWs were initially generated by a piezoelectric substrate. A couplant altered the propagating direction of these LWs to form the fluid-coupled LWs at a superstrate. The coffee-ring effect (CRE) of a suspension droplet on the superstrate was thus suppressed. The suspended nanospheres formed 3D PCs after the droplet dried out. Diversified PCs were fabricated using the developed set-up. Their transmittance spectra demonstrated the corresponding bandgap clearly. Advantages of utilizing fluid-coupled LWs for self-assembling 3D PCs include flexibility in excitation frequency, fabrication cost-effectiveness, acceptance for a passively oscillating substrate, and enlargement of sample area.

1.
Z.
Cai
,
Z.
Li
,
S.
Ravaine
,
M.
He
,
Y.
Song
,
Y.
Yin
,
H.
Zheng
,
J.
Teng
, and
A.
Zhang
, “
From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications
,”
Chem. Soc. Rev.
50
,
5898
(
2021
).
2.
A.
Yadav
,
N.
Yadav
,
V.
Agrawal
,
S. P.
Polyutov
,
A. S.
Tsipotan
,
S. V.
Karpov
,
V. V.
Slabko
,
V. S.
Yadav
,
Y.
Wu
,
H.
Zheng
, and
S.
RamaKrishna
, “
State-of-art plasmonic photonic crystals based on self-assembled nanostructures
,”
J. Mater. Chem. C
9
,
3368
(
2021
).
3.
Y. H.
Chen
,
L. H.
Liao
, and
Y. B.
Chen
, “
Realization of energy-saving glass using photonic crystals
,”
Front. Energy
12
,
178
(
2018
).
4.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
(
1997
).
5.
Y.
Li
,
Q.
Yang
,
M.
Li
, and
Y.
Song
, “
Rate-dependent interface capture beyond the coffee-ring effect
,”
Sci. Rep.
6
,
24628
(
2016
).
6.
L.
Bansal
,
P.
Seth
,
B.
Murugappan
, and
S.
Basu
, “
Suppression of coffee ring: (Particle) size matters
,”
Appl. Phys. Lett.
112
,
211605
(
2018
).
7.
J. M.
Baek
,
C.
Yi
, and
J. Y.
Rhee
, “
Central spot formed in dried coffee-water-mixture droplets: Inverse coffee-ring effect
,”
Curr. Appl. Phys.
18
,
477
(
2018
).
8.
B. M.
Weon
and
J. H.
Je
, “
Capillary force repels coffee-ring effect
,”
Phys. Rev. E
82
,
015305
(
2010
).
9.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A. G.
Yodh
, “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
,
308
(
2011
).
10.
H. B.
Eral
,
D. M.
Augustine
,
M. H. G.
Duits
, and
F.
Mugele
, “
Suppressing the coffee stain effect: How to control colloidal self-assembly in evaporating drops using electrowetting
,”
Soft Matter
10
,
4954
(
2011
).
11.
C.
Seo
,
D.
Jang
,
J.
Chae
, and
S.
Shin
, “
Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution
,”
Sci. Rep.
7
,
500
(
2017
).
12.
D.
Mampallil
,
J.
Reboud
,
R.
Wilson
,
D.
Wylie
,
D. R.
Klug
, and
J. M.
Cooper
, “
Acoustic suppression of the coffee-ring effect
,”
Soft Matter
11
,
7207
(
2015
).
13.
G.
Destgeer
,
A.
Hashmi
,
J.
Park
,
H.
Ahmed
,
M.
Afzal
, and
H. J.
Sung
, “
Microparticle self-assembly induced by travelling surface acoustic waves
,”
RSC Adv.
9
,
7916
(
2019
).
14.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids I: Free and Guided Propagation
(
Springer
,
Berlin
,
1999
).
15.
Z.
Ni
,
G.
Xu
,
J.
Huang
,
G.
Yao
,
J.
Tu
,
X.
Guo
, and
D.
Zhang
, “
Lamb wave coupled resonance for SAW acoustofluidics
,”
Appl. Phys. Lett.
118
,
051103
(
2021
).
16.
J. C.
Hsu
and
C. L.
Chao
, “
Acoustophoretic patterning of microparticles in a microfluidic chamber driven by standing Lamb waves
,”
Appl. Phys. Lett.
119
,
103504
(
2021
).
17.
J. D.
Joannopoulos
,
R. D.
Meade
, and
J. N.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
NJ
,
1995
).
18.
K. Y.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation
(
Springer
,
Berlin
,
2000
).
19.
G.
Destgeer
,
B.
Ha
,
J.
Park
, and
H. J.
Sung
, “
Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet
,”
Anal. Chem.
88
,
3976
(
2016
).
20.
S.
Sorohan
,
N.
Constantin
,
M.
Gavan
, and
V.
Anghel
, “
Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes
,”
Ultrasonics
51
,
503
(
2011
).
21.
J. C.
Hsu
,
T. T.
Wu
, and
H. S.
Hsu
, “
Measurement of frequency gaps and waveguiding in phononic plates with periodic stepped cylinders using pulsed laser generated ultrasound
,”
J. Appl. Phys.
113
,
083511
(
2013
).
22.
L.
Poltawski
and
T.
Watson
, “
Relative transmissivity of ultrasound coupling agents commonly used by therapists in the UK
,”
Ultrasound Med. Biol.
33
,
120
(
2007
).
23.
D. W.
Prather
,
S.
Shi
,
A.
Sharkawy
,
J.
Murakowski
, and
G. J.
Schneider
,
Photonic Crystals Theory, Applications, and Fabrication
(
WILEY
,
Hoboken
,
2009
).
24.
Y. H.
Chen
,
Y. J.
Lu
,
J. Y.
Chang
, and
Y. B.
Chen
, “
Impacts of both temperature and condensation on the band gap of photonic crystals around the freezing point
,”
Opt. Mater.
121
,
111596
(
2021
).
25.
Y.
Li
,
T.
Kunitake
, and
S.
Fujikawa
, “
Efficient fabrication of large, robust films of 3D-ordered polystyrene latex
,”
Colloids Surf., A
275
,
209
(
2006
).
26.
M.
Fang
,
T. T.
Volotinen
,
S.
Kulkarni
,
L. M.
Belova
, and
K. V.
Rao
, “
Designing photonic band gaps in SiO2-based face-centered cubic-structured crystals
,”
J. Nanophotonics
5
,
053514
(
2011
).
27.
Y. A.
Vlasov
,
M.
Deutsch
, and
D. J.
Norris
, “
Single-domain spectroscopy of self-assembled photonic crystals
,”
Appl. Phys. Lett.
76
,
1627
(
2000
).
28.
Y. A.
Vlasov
,
V. N.
Astratov
,
A. V.
Baryshev
,
A. A.
Kaplyanskii
,
O. Z.
Karimov
, and
M. F.
Limonov
, “
Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals
,”
Phys. Rev. E
61
,
5784
(
2000
).

Supplementary Material

You do not currently have access to this content.