Gold–germanium (AuxGe1x) solid solutions have been demonstrated as highly sensitive thin film thermometers for cryogenic applications. However, little is known regarding the performance of the films for thicknesses less than 100 nm. In response, we report on the resistivity and temperature coefficient of resistance (TCR) for sputtered films with thicknesses ranging from 10 to 100 nm and annealed at temperatures from 22 to 200 °C. The analysis is focused upon composition x=0.17, which demonstrates a strong temperature sensitivity over a broad range. The thinnest films are found to provide an enhancement in TCR, which approaches 20% K1 at 10 K. Furthermore, reduced anneal temperatures are required to crystallize the Ge matrix and achieve a maximum TCR for films of reduced thickness. These features favor the application of ultra-thin films as high-sensitivity, on-device thermometers in micro- and nanolectromechanical systems.

1.
E. A.
Scott
,
A.
Carow
,
D.
Pete
, and
C. T.
Harris
, “
Comparative analysis of the sensitivity of nanometallic thin film thermometers
,”
Nanotechnology
33
,
375503
(
2022
).
2.
Y. E.
Kesim
,
E.
Battal
,
M. Y.
Tanrikulu
, and
A. K.
Okyay
, “
An all-ZnO microbolometer for infrared imaging
,”
Infrared Phys. Technol.
67
,
245
249
(
2014
).
3.
B.
Wang
,
J.
Lai
,
H.
Li
,
H.
Hu
, and
S.
Chen
, “
Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
,”
Infrared Phys. Technol.
57
,
8
13
(
2013
).
4.
Q.
Zhang
and
X.
Peng
, “Preparation of TiO2−x film with a high TCR performance for uncooled thermal sensor,” in International Conference on Sensors and Instruments (ICSI 2021) (SPIE, 2021), Vol. 11887, pp. 12–17.
5.
S. S.
Courts
and
P. R.
Swinehart
, “
Review of CernoxTM (zirconium oxy-nitride) thin-film resistance temperature sensors
,”
AIP Conf. Proc.
684
,
393
398
(
2003
).
6.
C. T.
Harris
and
T.-M.
Lu
, “
A PtNiGe resistance thermometer for cryogenic applications
,”
Rev. Sci. Instrum.
92
,
054904
(
2021
).
7.
D. W.
Denlinger
,
E. N.
Abarra
,
K.
Allen
,
P. W.
Rooney
,
M. T.
Messer
,
S. K.
Watson
, and
F.
Hellman
, “
Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K
,”
Rev. Sci. Instrum.
65
,
946
959
(
1994
).
8.
C. K.
Chung
,
Y. L.
Chang
,
J. C.
Wu
,
J. J.
Jhu
, and
T. S.
Chen
, “
Characterization and patterning of novel high-TCR Ta–Si–N thin films for sensor application
,”
Sens. Actuators, A
156
,
323
327
(
2009
).
9.
M.
Abdel-Rahman
,
M.
Alduraibi
,
M.
Hezam
, and
B.
Ilahi
, “
Sputter deposited GeSn alloy: A candidate material for temperature sensing layers in uncooled microbolometers
,”
Infrared Phys. Technol.
97
,
376
380
(
2019
).
10.
H.
ElGhonimy
,
M. R.
Abdel-Rahman
,
M.
Hezam
,
M.
Alduraibi
,
N.
Al-Khalli
, and
B.
Ilahi
, “
Amorphous SiSn alloy: Another candidate material for temperature sensing layers in uncooled microbolometers
,”
Phys. Status Solidi B
258
,
2100103
(
2021
).
11.
X.
Wang
,
J.
Yang
,
Y.
Xiong
,
B.
Huang
,
T. T.
Xu
,
D.
Li
, and
D.
Xu
, “
Measuring nanowire thermal conductivity at high temperatures
,”
Meas. Sci. Technol.
29
,
025001
(
2018
).
12.
M. T.
Pettes
,
I.
Jo
,
Z.
Yao
, and
L.
Shi
, “
Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
,”
Nano Lett.
11
,
1195
1200
(
2011
).
13.
Y.-Y.
Su
,
X.-W.
Cheng
,
J.-B.
Li
,
Y.-K.
Dou
,
F.
Rehman
,
D.-Z.
Su
, and
H.-B.
Jin
, “
Evolution of microstructure in vanadium oxide bolometer film during annealing process
,”
Appl. Surf. Sci.
357
,
887
891
(
2015
).
14.
K.
Hippalgaonkar
,
B.
Huang
,
R.
Chen
,
K.
Sawyer
,
P.
Ercius
, and
A.
Majumdar
, “
Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport
,”
Nano Lett.
10
,
4341
4348
(
2010
).
15.
X.
Zhao
and
Y.
Dan
, “
A silicon nanowire heater and thermometer
,”
Appl. Phys. Lett.
111
,
043504
(
2017
).
16.
A.
Reihani
,
Y.
Luan
,
S.
Yan
,
J. W.
Lim
,
E.
Meyhofer
, and
P.
Reddy
, “
Quantitative mapping of unmodulated temperature fields with nanometer resolution
,”
ACS Nano
16
,
939
950
(
2022
).
17.
N. W.
Ashcroft
and
N. D.
Mermin
Solid State Physics (Saunders College Publishing, Philadelphia, 1976), pp. 1–6.
18.
S.
Sahling
,
O.
Béthoux
,
J. C.
Lasjaunias
, and
R.
Brusetti
, “
Rapid and highly sensitive AuGe thermometers for the temperature range 30 mK–300 K
,”
Physica B
219-220
,
754
756
(
1996
).
19.
S.
Tagliati
,
V. M.
Krasnov
, and
A.
Rydh
, “
Differential membrane-based nanocalorimeter for high-resolution measurements of low-temperature specific heat
,”
Rev. Sci. Instrum.
83
,
055107
(
2012
).
20.
S. K.
Ajmera
,
A. J.
Syllaios
,
G. S.
Tyber
,
M. F.
Taylor
, and
R. E.
Hollingsworth
, “Amorphous silicon thin-films for uncooled infrared microbolometer sensors,” in Infrared Technology and Applications XXXVI (SPIE, 2010), Vol. 7660, pp. 338–345.
21.
C.
Chen
,
X.
Yi
,
X.
Zhao
, and
B.
Xiong
, “Preparation and properties of vanadium dioxide thin films for uncooled microbolometer,” in 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442) (IEEE, 2000), pp. 145–146.
22.
J. R. A.
Dann
,
P. C.
Verpoort
,
J.
Ferreira de Oliveira
,
S. E.
Rowley
,
A.
Datta
,
S.
Kar-Narayan
,
C. J. B.
Ford
,
G. J.
Conduit
, and
V.
Narayan
, “
Au-Ge alloys for wide-range low-temperature on-chip thermometry
,”
Phys. Rev. Appl.
12
,
034024
(
2019
).
23.
T.
Nguyen
,
A.
Tavakoli
,
S.
Triqueneaux
,
R.
Swami
,
A.
Ruhtinas
,
J.
Gradel
,
P.
Garcia-Campos
,
K.
Hasselbach
,
A.
Frydman
,
B.
Piot
,
M.
Gibert
,
E.
Collin
, and
O.
Bourgeois
, “
Niobium nitride thin films for very low temperature resistive thermometry
,”
J. Low Temp. Phys.
197
,
348
356
(
2019
).
24.
D.
Querlioz
,
E.
Helgren
,
D. R.
Queen
,
F.
Hellman
,
R.
Islam
, and
D. J.
Smith
, “
Beneficial effects of annealing on amorphous Nb–Si thin-film thermometers
,”
Appl. Phys. Lett.
87
,
221901
(
2005
).
25.
R. V.
Tominov
,
Z. E.
Vakulov
,
V. I.
Avilov
,
D. A.
Khakhulin
,
N. V.
Polupanov
,
V. A.
Smirnov
, and
O. A.
Ageev
, “
The effect of growth parameters on electrophysical and memristive properties of vanadium oxide thin films
,”
Molecules
26
,
118
(
2020
).
26.
N.
Fieldhouse
,
S. M.
Pursel
,
M. W.
Horn
, and
S. S. N.
Bharadwaja
, “
Electrical properties of vanadium oxide thin films for bolometer applications: Processed by pulse dc sputtering
,”
J. Phys. D: Appl. Phys.
42
,
055408
(
2009
).
27.
R. T. R.
Kumar
,
B.
Karunagaran
,
D.
Mangalaraj
,
S. K.
Narayandass
,
P.
Manoravi
,
M.
Joseph
,
V.
Gopal
,
R. K.
Madaria
, and
J. P.
Singh
, “
Room temperature deposited vanadium oxide thin films for uncooled infrared detectors
,”
Mater. Res. Bull.
38
,
1235
1240
(
2003
).
28.
A. J.
Syllaios
,
T. R.
Schimert
,
R. W.
Gooch
,
W. L.
McCardel
,
B. A.
Ritchey
, and
J. H.
Tregilgas
, “
Amorphous silicon microbolometer technology
,”
MRS Online Proc. Libr.
609
,
1441
1446
(
1999
).
29.
R.
Ambrosio
,
M.
Moreno
,
J.
Mireles
,
A.
Torres
,
A.
Kosarev
, and
A.
Heredia
, “
An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys
,”
Phys. Status Solidi C
7
,
1180
1183
(
2010
).
30.
S.
Ajmera
,
J.
Brady
,
C.
Hanson
,
T.
Schimert
,
A. J.
Syllaios
, and
M.
Taylor
, “Performance improvement in amorphous silicon based uncooled microbolometers through pixel design and materials development,” in Infrared Technology and Applications XXXVII (SPIE, 2011), Vol. 8012, pp. 520–527.
31.
B. W.
Dodson
,
W. L.
McMillan
,
J. M.
Mochel
, and
R. C.
Dynes
, “
Metal-insulator transition in disordered germanium-gold alloys
,”
Phys. Rev. Lett.
46
,
46
49
(
1981
).
32.
T. M.
Berlicki
,
E. L.
Prociów
,
G.
Beensh-Marchwicka
, and
S. J.
Osadnik
, “
Electrical properties of Ge–Au films prepared by magnetron sputtering
,”
Vacuum
65
,
73
79
(
2002
).
33.
O.
Béthoux
,
R.
Brusetti
,
J. C.
Lasjaunias
, and
S.
Sahling
, “
Au-Ge film thermometers for temperature range 30 mK–300 K
,”
Cryogenics
35
,
447
449
(
1995
).
34.
C.
Chen
,
C.
Li
,
S.
Min
,
Q.
Guo
,
Z.
Xia
,
D.
Liu
,
Z.
Ma
, and
F.
Xia
, “
Ultrafast silicon nanomembrane microbolometer for long-wavelength infrared light detection
,”
Nano Lett.
21
,
8385
8392
(
2021
).
35.
A.
Varpula
,
K.
Tappura
,
J.
Tiira
,
K.
Grigoras
,
O.-P.
Kilpi
,
K.
Sovanto
,
J.
Ahopelto
, and
M.
Prunnila
, “
Nano-thermoelectric infrared bolometers
,”
APL Photonics
6
,
036111
(
2021
).
36.
A.
Herrera-Gómez
,
A.
Hegedus
, and
P. L.
Meissner
, “
Chemical depth profile of ultrathin nitrided SiO2 films
,”
Appl. Phys. Lett.
81
,
1014
1016
(
2002
).
37.
P.
Klement
,
C.
Feser
,
B.
Hanke
,
K. v.
Maydell
, and
C.
Agert
, “
Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers
,”
Appl. Phys. Lett.
102
,
152109
(
2013
).
38.
Z.
Hao
,
S. A.
Kochubei
,
A. A.
Popov
, and
V. A.
Volodin
, “
On Raman scattering cross section ratio of amorphous to nanocrystalline germanium
,”
Solid State Commun.
313
,
113897
(
2020
).
39.
N.
Fukata
,
K.
Sato
,
M.
Mitome
,
Y.
Bando
,
T.
Sekiguchi
,
M.
Kirkham
,
J.-i.
Hong
,
Z. L.
Wang
, and
R. L.
Snyder
, “
Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires
,”
ACS Nano
4
,
3807
3816
(
2010
).
40.
C.
Droz
,
E.
Vallat-Sauvain
,
J.
Bailat
,
L.
Feitknecht
,
J.
Meier
, and
A.
Shah
, “
Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
81
,
61
71
(
2004
).
41.
H.
Okamoto
and
T. B.
Massalski
, “
The Au-Ge (gold-germanium) system
,”
Bull. Alloy Phase Diagr.
5
,
601
610
(
1984
).
42.
J. M.
McGlone
,
K. R.
Olsen
,
W. F.
Stickle
,
J. E.
Abbott
,
R. A.
Pugliese
,
G. S.
Long
,
D. A.
Keszler
, and
J. F.
Wager
, “
Ta-based amorphous metal thin films
,”
J. Alloys Compd.
650
,
102
105
(
2015
).
43.
A.
Pandey
,
C.
Mazumdar
,
R.
Ranganathan
,
M.
De Raychaudhury
,
T.
Saha-Dasgupta
,
S.
Tripathi
,
D.
Pandey
, and
S.
Dattagupta
, “
Negative temperature coefficient of resistance in a crystalline compound
,”
Europhys. Lett.
84
,
47007
(
2008
).
44.
W.
Ma
,
X.
Zhang
, and
K.
Takahashi
, “
Electrical properties and reduced Debye temperature of polycrystalline thin gold films
,”
J. Phys. D: Appl. Phys.
43
,
465301
(
2010
).
45.
W. C.
Fon
,
K. C.
Schwab
,
J. M.
Worlock
, and
M. L.
Roukes
, “
Nanoscale, phonon-coupled calorimetry with sub-attojoule/Kelvin resolution
,”
Nano Lett.
5
,
1968
1971
(
2005
).

Supplementary Material

You do not currently have access to this content.