The development of predictive models for the accurate estimation of thermo-physical properties of the Thermal Barrier Coated (TBC) aero-engine components is critical in assessing component life and maintenance. TBCs are multi-layer systems applied on metallic structures operating at higher temperatures, such as aero-engine parts and gas turbine blades. These thermally insulating materials prolong the component life by limiting the thermal exposure of structural components. In this study, simulation-assisted Artificial Intelligence (AI) is developed to predict thermal conductivity (k), heat capacity (ρCp), and thickness measurement of TBC from thermal responses of samples with varying topcoat layer thicknesses. The dataset used in the AI model is a low-fidelity thermal profile from a multi-layer heat transfer model of the TBC system for training the neural network and high-fidelity thermogram from pulsed thermography experiments that are used for validation of the trained neural network. The proposed method demonstrated potential in the prediction of thermo-physical properties for real samples with a newly coated topcoat layer of thickness measurement varying from 24 to 120 μm, with a mean absolute percentage error (MAPE) for k and ρCp predictions of 1.71% and 1.37%, respectively, and for thickness prediction, MAPE ranges from 0.81% to 6.14%. This work explores the possibilities of merging a large set of low-fidelity simulation data and a small set of high-fidelity experimental data to train the deep neural network to achieve promising results in real-world thermography experiments.

1.
T. M.
Yonushonis
, “
Overview of thermal barrier coatings in diesel engines
,”
J. Therm. Spray Technol.
6
,
50
56
(
1997
).
2.
D. R.
Clarke
,
M.
Oechsner
, and
N. P.
Padture
, “
Thermal-barrier coatings for more efficient gas-turbine engines
,”
MRS Bull.
37
,
891
898
(
2012
).
3.
N. P.
Padture
,
M.
Gell
, and
E. H.
Jordan
, “
Thermal barrier coatings for gas-turbine engine applications
,”
Science
296
,
280
284
(
2002
).
4.
X.
Song
,
F.
Meng
,
M.
Kong
,
Y.
Wang
,
L.
Huang
,
X.
Zheng
 et al., “
Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction
,”
Mater. Charact.
120
,
244
248
(
2016
).
5.
Q.
Tang
,
J.
Dai
,
C.
Bu
,
L.
Qi
, and
D.
Li
, “
Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique
,”
Appl. Therm. Eng.
107
,
463
468
(
2016
).
6.
D. M.
Nissley
, “
Thermal barrier coating life modeling in aircraft gas turbine engines
,”
J. Therm. Spray Technol.
6
,
91
(
1997
).
7.
T.
Fukuchi
,
N.
Fuse
,
M.
Okada
,
T.
Ozeki
,
T.
Fujii
,
M.
Mizuno
 et al., “
Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave
,”
Electr. Eng. Jpn.
189
,
1
8
(
2014
).
8.
S.
Dixon
,
B.
Lanyon
, and
G.
Rowlands
, “
Coating thickness and elastic modulus measurement using ultrasonic bulk wave resonance
,”
Appl. Phys. Lett.
88
,
141907
(
2006
).
9.
Y.
Zhao
,
L.
Lin
,
X. M.
Li
, and
M. K.
Lei
, “
Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method
,”
NDT&E Int.
43
,
579
585
(
2010
).
10.
H.-L. R.
Chen
,
B.
Zhang
,
M. A.
Alvin
, and
Y.
Lin
, “
Ultrasonic detection of delamination and material characterization of thermal barrier coatings
,”
J. Therm. Spray Technol.
21
,
1184
1194
(
2012
).
11.
H.-C.
Yang
and
C.-C.
Tai
, “
Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate
,”
Meas. Sci. Technol.
13
,
1259
1265
(
2002
).
12.
W.
Yin
and
A. J.
Peyton
, “
Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors
,”
NDT&E Int.
40
,
43
48
(
2007
).
13.
J.
Zhang
,
M.
Yuan
,
S.-J.
Song
, and
H.-J.
Kim
, “
Precision measurement of coating thickness on ferromagnetic tube using pulsed eddy current technique
,”
Int. J. Precis. Eng. Manuf.
16
,
1723
1728
(
2015
).
14.
S. K.
Jain
,
P. P.
Gupta
, and
A. C.
Eapen
, “
An X-ray fluorescence method for coating thickness measurement
,”
X-Ray Spectrom.
8
,
11
13
(
1979
).
15.
M.
Kolbe
,
B.
Beckhoff
,
M.
Krumrey
, and
G.
Ulm
, “
Thickness determination for Cu and Ni nanolayers: Comparison of completely reference-free fundamental parameter-based X-ray fluorescence analysis and X-ray reflectometry
,”
Spectrochim. Acta, Part B
60
,
505
510
(
2005
).
16.
A.
Carapelle
,
K.
Fleury-Frenette
,
J.-P.
Collette
,
H.-P.
Garnir
, and
P.
Harlet
, “
Portable x-ray fluorescence spectrometer for coating thickness measurement
,”
Rev. Sci. Instrum.
78
,
123109
(
2007
).
17.
C.-C.
Chen
,
D.-J.
Lee
,
T.
Pollock
, and
J. F.
Whitaker
, “
Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings
,”
Opt Express
18
,
3477
3486
(
2010
).
18.
T.
Fukuchi
,
N.
Fuse
,
M.
Okada
,
T.
Fujii
,
M.
Mizuno
, and
K.
Fukunaga
, “
Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves
,”
Electron. Commun. Jpn.
96
,
37
45
(
2013
).
19.
S.
Marinetti
,
D.
Robba
,
F.
Cernuschi
,
P. G.
Bison
, and
E.
Grinzato
, “
Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects
,”
Infrared Phys. Technol.
49
,
281
285
(
2007
).
20.
D. L.
Balageas
,
J. C.
Krapez
, and
P.
Cielo
, “
Pulsed photothermal modeling of layered materials
,”
J. Appl. Phys.
59
,
348
357
(
1986
).
21.
S.
Mezghani
,
E.
Perrin
,
V.
Vrabie
,
J. L.
Bodnar
,
J.
Marthe
, and
B.
Cauwe
, “
Evaluation of paint coating thickness variations based on pulsed infrared thermography laser technique
,”
Infrared Phys. Technol.
76
,
393
401
(
2016
).
22.
J.-Y.
Zhang
,
X.
Meng
, and
Y.
Ma
, “
A new measurement method of coatings thickness based on lock-in thermography
,”
Infrared Phys. Technol.
76
,
655
660
(
2016
).
23.
T. D.
Bennett
and
F.
Yu
, “
A nondestructive technique for determining thermal properties of thermal barrier coatings
,”
J. Appl. Phys.
97
,
013520
(
2005
).
24.
H.
Wang
and
R. B.
Dinwiddie
, “
Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings
,”
J. Therm. Spray Technol.
9
,
210
214
(
2000
).
25.
B. K.
Jang
,
M.
Yoshiya
,
N.
Yamaguchi
, and
H.
Matsubara
, “
Evaluation of thermal conductivity of zirconia coating layers deposited by EB-PVD
,”
J. Mater. Sci.
39
,
1823
1825
(
2004
).
26.
R.
Shrestha
and
W.
Kim
, “
Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography—Part I: Simulation
,”
Infrared Phys. Technol.
83
,
124
131
(
2017
).
27.
S.
Unnikrishnakurup
,
J.
Dash
,
S.
Ray
,
B.
Pesala
, and
K.
Balasubramaniam
, “
Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: A comparative study
,”
NDT&E Int.
116
,
102367
(
2020
).
28.
L.
Muzika
,
M.
Švantner
,
Š
Houdková
, and
P.
Šulcová
, “
Application of flash-pulse thermography methods for quantitative thickness inspection of coatings made by different thermal spraying technologies
,”
Surf Coatings Technol.
406
,
126748
(
2021
).
29.
R.
Shrestha
and
W.
Kim
, “
Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography—Part II: Experimental investigation
,”
Infrared Phys. Technol.
92
,
24
29
(
2018
).
30.
M.
Švantner
,
L.
Muzika
, and
S.
Houdková
, “
Quantitative inspection of coatings thickness by time-power transformation flash pulse thermographic method
,”
Proceedings
27
,
32
(
2019
).
31.
A.
Moskovchenko
,
V.
Vavilov
,
M.
Švantner
,
L.
Muzika
, and
Š
Houdková
, “
Active IR thermography evaluation of coating thickness by determining apparent thermal effusivity
,”
Materials
13
,
4057
(
2020
).
32.
J. G.
Sun
,
A.
Kulkarni
, and
A. T.
Fry
, “
Pulsed thermal imaging for non-destructive evaluation of hot gas path coatings in gas turbines
,”
Mater. High Temp.
37
,
1
15
(
2020
).
33.
C. M.
Bishop
,
Pattern Recognition and Machine Learning (Information Science and Statistics)
(
Springer-Verlag
,
Berlin
,
2006
).
34.
Y.
Largouët
,
A.
Darabi
, and
X.
Maldague
, “
Depth evaluation in pulsed phase thermography with neural network
,” in
Review of Progress in Quantitative Nondestructive Evaluation
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Springer US
,
Boston, MA
,
1999
), pp.
611
617
.
35.
D. R.
Prabhu
and
W. P.
Winfree
, “
Neural network based processing of thermal NDE data for corrosion detection
,” in
Review of Progress in Quantitative Nondestructive Evaluation
(
Springer
,
1993
), pp.
775
782
.
36.
P.
Bison
,
C.
Bressan
,
R. D.
Sarno
,
E.
Grinzato
,
S.
Marinetti
, and
G.
Manduchi
, “
Thermal NDE of delaminations in plastic materials by neural network processing
,”
Quant. InfraRed Thermogr.
42
, 214–219 (
1994
).
37.
S.
Vallerand
,
A.
Darabi
, and
X. P.
Maldague
, “
Defect detection in pulsed thermography: A comparison of Kohonen and perceptron neural networks
,”
Proc. SPIE
3700
, 20–25 (
1999
).
38.
X.
Maldague
,
Y.
Largouët
, and
J.-P.
Couturier
, “
A study of defect depth using neural networks in pulsed phase thermography: Modelling, noise, experiments
,”
Rev. Gen. Therm.
37
,
704
717
(
1998
).
39.
H.
Halloua
,
A.
Saifi
,
A.
El-amiri
,
A.
Obbadi
,
Y.
Errami
,
S.
Sahnoun
 et al., The processing of active infrared thermography data by a hybrid neural algorithm for the evaluation of thermal barrier coating thicknesses, in
2018 6th International Renewable and Sustainable Energy Conference
(IEEE,
2018
), pp.
1
6
.
40.
X. P.
Maldague
. Theory and practice of infrared technology for nondestructive testing,
2001
.
41.
X. P.
Maldague
. Nondestructive testing handbook. 3. Infrared and thermal testing,
2001
.
42.
V. P.
Vavilov
and
D. D.
Burleigh
, “
Review of pulsed thermal NDT: Physical principles, theory and data processing
,”
NDT&E Int.
73
,
28
52
(
2015
).
43.
D.
Sharath
,
M.
Menaka
, and
B.
Venkatraman
, “
Defect characterization using pulsed thermography
,”
J. Nondestruct. Eval.
32
,
134
141
(
2013
).
44.
P. G.
Bison
,
S.
Marinetti
,
E. G.
Grinzato
,
V. P.
Vavilov
,
F.
Cernuschi
, and
D.
Robba
, “
Inspecting thermal barrier coatings by IR thermography
,”
Proc. SPIE
5073
,
318
(
2003
).
45.
J. G.
Sun
, “
Pulsed thermal imaging measurement of thermal properties for thermal barrier coatings based on a multilayer heat transfer model
,”
J. Heat Transfer
136
,
081601
(
2014
).
46.
S. M.
Shepard
,
Y. L.
Hou
,
J. R.
Lhota
,
D.
Wang
, and
T.
Ahmed
, “
Thermographic measurement of thermal barrier coating thickness
,” in
Proc. SPIE
5782
, 407–410 (
2005)
.
47.
M.
Ciniviz
,
M. S.
Salman
,
E.
Canlı
,
H.
Köse
, and
Ö
Solmaz
, Ceramic Coating Applications and Research Fields for Internal Combustion Engines, n.d.
48.
H.
Liu
,
P.
Chen
,
H.
Yang
,
J.
Hao
,
X.
Tian
,
X.
He
 et al., “
Processing window and microstructure of NiCoCrAlY coating deposited on cast iron using multilayer laser cladding
,”
J. Spectrosc.
2019
,
9308294
(
2019
).
49.
M.
Ranjbar-far
,
J.
Absi
,
G.
Mariaux
, and
D. S.
Smith
, “
Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies
,”
Mater. Des.
32
,
4961
4969
(
2011
).
50.
S.
Walczak
and
N.
Cerpa
, “
Heuristic principles for the design of artificial neural networks
,”
Inf. Softw. Technol.
41
,
107
117
(
1999
).
51.
P. C.
Jackson
,
Introduction to Artificial Intelligence
(
Courier Dover Publications
,
2019
).
52.
J.
Schmidhuber
, “
Deep learning in neural networks: An overview
,”
Neural Networks
61
,
85
117
(
2015
).
53.
A.
Deshpande
and
M.
Kumar
,
Artificial Intelligence for big Data: Complete Guide to Automating big Data Solutions Using Artificial Intelligence Techniques
(
Packt Publishing Ltd
,
2018
).
54.
D.
Merayo
,
A.
Rodríguez-Prieto
, and
A. M.
Camacho
, “
Prediction of physical and mechanical properties for metallic materials selection using big data and artificial neural networks
,”
IEEE Access
8
,
13444
13456
(
2020
).
You do not currently have access to this content.