Active plasma resonance spectroscopy (APRS) is a process-compatible plasma diagnostic method, which utilizes the natural ability of plasmas to resonate on or near the electron plasma frequency. The multipole resonance probe (MRP) is a particular design of APRS that has a high degree of geometric and electric symmetry. The principle of the MRP can be described on the basis of an idealized geometry that is particularly suited for theoretical investigations. In a pressure regime of a few Pa or lower, kinetic effects become important, which cannot be predicted by the Drude model. Therefore, in this paper, a dynamic model of the interaction of the idealized MRP with a plasma is established. The proposed scheme reveals the kinetic behavior of the plasma that is able to explain the influence of kinetic effects on the resonance structure. Similar to particle-in-cell, the spectral kinetic method iteratively determines the electric field at each particle position, however, without employing any numerical grids. The optimized analytical model ensures the high efficiency of the simulation. Eventually, the presented work is expected to cover the limitation of the Drude model, especially for the determination of the pure collisionless damping caused by kinetic effects. A formula to determine the electron temperature from the half-width Δω is proposed.

1.
L.
Tonks
and
I.
Langmuir
,
Phys. Rev.
33
,
195
(
1929
).
2.
K.
Takayama
,
H.
Ikegami
, and
S.
Miyazaki
,
Phys. Rev. Lett.
5
,
238
(
1960
).
3.
S. M.
Levitskii
and
I. P.
Shashurin
,
Sov. Phys. Tech. Phys.
8
,
319
(
1963
).
4.
R.
Buckley
,
Proc. R. Soc.
290
,
186
(
1966
).
5.
R. L.
Stenzel
,
Rev. Sci. Instrum.
47
,
603
(
1976
).
6.
R. B.
Piejak
,
V. A.
Godyak
,
R.
Garner
,
B. M.
Alexandrovich
, and
N.
Sternberg
,
J. Appl. Phys.
95
,
3785
(
2004
).
7.
S.
Dine
,
J. P.
Booth
,
G. A.
Curley
,
C. S.
Corr
,
J.
Jolly
, and
J.
Guillon
,
Plasma Sources Sci. Technol.
14
,
777
(
2005
).
8.
C.
Scharwitz
,
M.
Böke
,
J.
Winter
,
M.
Lapke
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Appl. Phys. Lett.
94
,
011502
(
2009
).
9.
J.
Xu
,
K.
Nakamura
,
Q.
Zhang
, and
H.
Sugai
,
Plasma Sources Sci. Technol.
18
,
045009
(
2009
).
10.
B.
Li
,
H.
Li
,
Z.
Chen
,
J.
Xie
,
G.
Feng
, and
W.
Liu
,
Plasma Sci. Technol.
12
,
513
(
2010
).
11.
H.
Wang
,
H.
Li
,
Y.
Wang
,
B.
Li
,
W.
You
,
Z.
Chen
,
J.
Xie
, and
W.
Liu
,
Plasma Sci. Technol.
13
,
197
(
2011
).
12.
I.
Linag
,
K.
Nakamura
, and
H.
Sugai
,
Appl. Phys. Express
4
,
066101
(
2011
).
13.
C.
Schulz
,
T.
Styrnoll
,
P.
Awakowicz
, and
I.
Rolfes
,
IEEE Trans. Instrum. Meas.
64
,
857
(
2015
).
14.
H.
Kokura
,
K.
Nakamura
,
I. P.
Ghanashev
, and
H.
Sugai
,
Jpn. J. Appl. Phys.
38
,
5262
(
1999
).
15.
H.
Sugai
and
K.
Nakamura
,
Jpn. J. Appl. Phys.
58
,
060101
(
2019
).
16.
M.
Lapke
,
J.
Oberrath
,
C.
Schulz
,
R.
Storch
,
T.
Styrnoll
,
C.
Zietz
,
P.
Awakowicz
,
R. P.
Brinkmann
,
T.
Musch
,
T.
Mussenbrock
, and
I.
Rolfes
,
Plasma Sources Sci. Technol.
20
,
042001
(
2011
).
17.
M.
Lapke
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Appl. Phys. Lett.
93
,
051502
(
2008
).
18.
C.
Schulz
,
I.
Rolfes
,
T.
Styrnoll
,
P.
Awakowicz
,
J.
Oberrath
,
T.
Mussenbrock
,
R. P.
Brinkmann
,
R.
Storch
, and
T.
Musch
, in
Proceedings of IEEE Sensors, Baltimore, MD
(IEEE, 2013), pp. 1–4.
19.
C.
Schulz
and
I.
Rolfes
, in
Proceedings of Antennas Propagation Society International Symposium, Orlando, FL
(IEEE, 2013), pp. 2181–2182.
20.
J.
Oberrath
and
R. P.
Brinkmann
,
Plasma Sources Sci. Technol.
23
,
065025
(
2014
).
21.
T.
Styrnoll
,
J.
Harhausen
,
M.
Lapke
,
R.
Storch
,
R. P.
Brinkmann
,
R.
Foest
,
A.
Ohl
, and
P.
Awakowicz
,
Plasma Sources Sci. Technol.
22
,
045008
(
2013
).
22.
T.
Styrnoll
,
S.
Bienholz
,
M.
Lapke
, and
P.
Awakowicz
,
Plasma Sources Sci. Technol.
23
,
025013
(
2014
).
23.
M.
Lapke
,
J.
Oberrath
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Plasma Sources Sci. Technol.
22
,
025005
(
2013
).
24.
J.
Oberrath
and
R. P.
Brinkmann
,
Plasma Sources Sci. Technol.
23
,
045006
(
2014
).
25.
J.
Oberrath
and
R. P.
Brinkmann
,
Plasma Sources Sci. Technol.
25
,
065020
(
2016
).
26.
J.
Oberrath
,
Plasma Sources Sci. Technol.
27
,
045003
(
2018
).
27.
J.
Oberrath
,
Plasma Sources Sci. Technol.
29
,
055005
(
2020
).
29.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics Via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
30.
F. H.
Harlow
,
Meth. Comp. Phys.
3
,
319
(
1964
).
31.
M. A.
Hellberg
,
J. Plasma Phys.
2
,
395
(
1968
).
32.
A. C.
Calder
and
J. G.
Laframboise
,
Radio Sci.
20
,
989
(
1985
).
33.
R.
Fitzpatrick
,
Plasma Physics: An Introduction
(
CRC Press
,
Boca Raton
, FL,
2015
).
34.
T.
Mussenbrock
,
T.
Hemke
,
D.
Ziegler
,
R. P.
Brinkmann
, and
M.
Klick
,
Plasma Sources Sci. Technol.
17
,
025018
(
2008
).
35.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
36.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
Hoboken
, NJ,
2005
).
37.
O. A.
Popov
and
V. A.
Godyak
,
J. Appl. Phys.
57
,
53
(
1985
).
38.
K.-U.
Riemann
,
J. Appl. Phys.
65
,
999
(
1989
).
You do not currently have access to this content.