The thermal stability of fullerenes plays a fundamental role in their synthesis and in their thermodynamic and kinetic properties. Here, we perform extensive molecular dynamics (MD) simulations using an accurate machine-learning-based Gaussian Approximation Potential (GAP-20) force field to investigate the energetic and thermal properties of the entire set of 1812 C60 isomers. Our MD simulations predict a comprehensive and quantitative correlation between the relative isomerization energy distribution of the C60 isomers and their thermal fragmentation temperatures. We find that the 1812 C60 isomers span over an energetic range of over 400 kcal mol1, where the majority of isomers (85%) lie in the range between 90 and 210 kcal mol1 above the most stable C60-Ih buckminsterfullerene. Notably, the MD simulations show a clear statistical correlation between the relative energies of the C60 isomers and their fragmentation temperature. The maximum fragmentation temperature is 4800 K for the C60-Ih isomer and 3700 K for the energetically least stable isomer, where nearly 80% of isomers lie in a temperature window of 4000–4500 K. In addition, an Arrhenius-based approach is used to map the timescale gap between simulation and experiment and establish a connection between the MD simulations and fragmentation temperatures.

1.
L.
Wang
,
B.
Liu
,
H.
Li
,
W.
Yang
,
Y.
Ding
,
S. V.
Sinogeikin
,
Y.
Meng
,
Z.
Liu
,
X. C.
Zeng
, and
W. L.
Mao
, “
Long-range ordered carbon clusters: A crystalline material with amorphous building blocks
,”
Science
337
(
6096
),
825
828
(
2012
).
2.
W.
Zhao
,
D.
Qian
,
S.
Zhang
,
S.
Li
,
O.
Inganäs
,
F.
Gao
, and
J.
Hou
, “
Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability
,”
Adv. Mater.
28
(
23
),
4734
4739
(
2016
).
3.
S. B.
Dkhil
,
M.
Pfannmöller
,
M. I.
Saba
,
M.
Gaceur
,
H.
Heidari
,
C.
Videlot-Ackermann
,
O.
Margeat
,
A.
Guerrero
,
J.
Bisquert
,
G.
Garcia-Belmonte
,
A.
Mattoni
,
S.
Bals
, and
J.
Ackermann
, “
Toward high-temperature stability of PTB7-based bulk heterojunction solar cells: Impact of fullerene size and solvent additive
,”
Adv. Energy Mater.
7
(
4
),
1601486
(
2017
).
4.
C.
Pei
,
M.
Feng
,
Z.
Yang
,
M.
Yao
,
Y.
Yuan
,
X.
Li
,
B.
Hu
,
M.
Shen
,
B.
Chen
,
B.
Sundqvist
, and
L.
Wang
, “
Quasi 3D polymerization in C60 bilayers in a fullerene solvate
,”
Carbon
124
,
499
505
(
2017
).
5.
C.
Pei
and
L.
Wang
, “
Recent progress on high-pressure and high-temperature studies of fullerenes and related materials
,”
Matter Radiat. Extremes
4
(
2
),
028201
(
2019
).
6.
Y.
Pan
,
Z.
Guo
,
S.
Ran
, and
Z.
Fang
, “
Influence of fullerenes on the thermal and flame-retardant properties of polymeric materials
,”
J. Appl. Polym. Sci.
137
(
1
),
47538
(
2020
).
7.
C. S.
Sundar
,
A.
Bharathi
,
Y.
Hariharan
,
J.
Janaki
,
V. S.
Sastry
, and
T. S.
Radhakrishnan
, “
Thermal decomposition of C60
,”
Solid State Commun.
84
,
823
826
(
1992
).
8.
B. L.
Zhang
,
C. Z.
Wang
,
C. T.
Chan
, and
K. M.
Ho
, “
Thermal disintegration of carbon fullerenes
,”
Phys. Rev. B
48
,
11381
11384
(
1993
).
9.
S.
Serra
,
S.
Sanguinetti
, and
L.
Colombo
, “
Solid-to-liquid phase change and fragmentation in C60
,”
J. Chem. Phys.
102
(
5
),
2151
2155
(
1995
).
10.
M. R.
Stetzer
,
P. A.
Heiney
,
J. E.
Fischer
, and
A. R.
McGhie
, “
Thermal stability of solid C60
,”
Phys. Rev. B
55
,
127
131
(
1997
).
11.
V. I.
Borodin
and
V. A.
Trukhacheva
, “
Thermal stability of fullerenes
,”
Tech. Phys. Lett.
30
(
7
),
598
599
(
2004
).
12.
I. V.
Davydov
,
A. I.
Podlivaev
, and
L. A.
Openov
, “
Anomalous thermal stability of metastable C20 fullerene
,”
Phys. Solid State
47
(
4
),
778
784
(
2005
).
13.
D.
Manna
and
J. M. L.
Martin
, “
What are the ground state structures of C20 and C24? An explicitly correlated ab initio approach
,”
J. Phys. Chem. A
120
(
1
),
153
160
(
2016
).
14.
R.
Sure
,
A.
Hansen
,
P.
Schwerdtfeger
, and
S.
Grimme
, “
Comprehensive theoretical study of all 1812 C60 isomers
,”
Phys. Chem. Chem. Phys.
19
,
14296
14305
(
2017
).
15.
A.
Aghajamali
and
A.
Karton
, “
Can force fields developed for carbon nanomaterials describe the isomerization energies of fullerenes?
,”
Chem. Phys. Lett.
779
,
138853
(
2021
).
16.
A.
Aghajamali
and
A.
Karton
, “
Correlation between the energetic and thermal properties of C40 fullerene isomers: An accurate machine-learning force field study
,”
Micro Nano Eng.
14
,
100105
(
2022
).
17.
P.
Rowe
,
V. L.
Deringer
,
P.
Gasparotto
,
G.
Csányi
, and
A.
Michaelides
, “
An accurate and transferable machine learning potential for carbon
,”
J. Chem. Phys.
153
,
034702
(
2020
).
18.
J.
Tersoff
, “
Empirical interatomic potential for carbon, with applications to amorphous carbon
,”
Phys. Rev. Lett.
61
,
2879
2882
(
1988
).
19.
J. H.
Los
,
L. M.
Ghiringhelli
,
E. J.
Meijer
, and
A.
Fasolino
, “
Improved long-range reactive bond-order potential for carbon. I. Construction
,”
Phys. Rev. B
72
,
214102
14
(
2005
).
20.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
, “
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
,”
J. Phys.: Condens. Matter.
14
,
783
802
(
2002
).
21.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Chem. Phys.
112
,
6472
6486
(
2000
).
22.
N. A.
Marks
,
Amorphous Carbon and Related Materials
(
Springer Netherlands
,
2010
), pp.
129
169
.
23.
C.
de Tomas
,
I.
Suarez-Martinez
, and
N. A.
Marks
, “
Graphitization of amorphous carbons: A comparative study of interatomic potentials
,”
Carbon
109
,
681
693
(
2016
).
24.
C.
de Tomas
,
A.
Aghajamali
,
J. L.
Jones
,
D. J.
Lim
,
M. J.
López
,
I.
Suarez-Martinez
, and
N. A.
Marks
, “
Transferability in interatomic potentials for carbon
,”
Carbon
155
,
624
634
(
2019
).
25.
C.
Qian
,
B.
McLean
,
D.
Hedman
, and
F.
Ding
, “
A comprehensive assessment of empirical potentials for carbon materials
,”
APL Mater.
9
,
061102
(
2021
).
26.
A.
Aghajamali
and
A.
Karton
, “
Comparative study of carbon force fields for the simulation of carbon onions
,”
Aust. J. Chem.
74
,
709
714
(
2021
).
27.
A.
Aghajamali
and
A.
Karton
, “
Superior performance of the machine-learning GAP force field for fullerene structures
,”
Struct. Chem.
33
,
505
510
(
2022
).
28.
B.
Karasulu
,
J.-M.
Leyssale
,
P.
Rowe
,
C.
Weber
, and
C.
de Tomas
, “
Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials
,”
Carbon
191
,
255
266
(
2022
).
29.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Chem. Phys.
117
,
1
19
(
1995
).
30.
See http://lammps.sandia.gov/ for “LAMMPS.”
31.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
32.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
33.
For more details, see the http://www.libatoms.org.
34.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
35.
K.
Momma
and
F.
Izumi
, “
VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
36.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO: The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
37.
C.
de Tomas
,
I. S.
Martinez
,
F.
Vallejos-Burgos
,
M. J.
López
,
K.
Kaneko
, and
N. A.
Marks
, “
Structural prediction of graphitization and porosity in carbide-derived carbons
,”
Carbon
119
,
1
9
(
2017
).
38.
A.
Aghajamali
,
A. A.
Shiryaev
, and
N. A.
Marks
, “
Molecular dynamics approach for predicting release temperatures of noble gases in presolar nanodiamonds
,”
Astrophys. J.
916
,
85
(
2021
).
39.
A.
Aghajamali
, “Atomistic simulations of diamond: Implantation, annealing, deformation and relaxation,” Ph.D. thesis (Curtin University, 2020).
40.
C. Z.
Wang
,
C. H.
Xu
,
C. T.
Chan
, and
K. M.
Ho
, “
Disintegration and formation of fullerene C60
,”
J. Phys. Chem.
96
(
9
),
3563
3565
(
1992
).
41.
C.
Xu
and
G. E.
Scuseria
, “
Tight-binding molecular dynamics simulations of fullerene annealing and fragmentation
,”
Phys. Rev. Lett.
72
,
669
672
(
1994
).
42.
S. G.
Kim
and
D.
Tománek
, “
Melting the fullerenes: A molecular dynamics study
,”
Phys. Rev. Lett.
72
,
2418
2421
(
1994
).
43.
P.
Schwerdtfeger
,
L. N.
Wirz
, and
J.
Avery
, “
The topology of fullerenes
,”
WIREs Comput. Mol. Sci.
5
,
96
145
(
2015
).
44.
L. N.
Wirz
,
R.
Tonner
,
A.
Hermann
,
R.
Sure
, and
P.
Schwerdtfeger
, “
From small fullerenes to the graphene limit: A harmonic force-field method for fullerenes and a comparison to density functional calculations for Goldberg–Coxeter fullerenes up to C980
,”
J. Comput. Chem.
37
,
10
17
(
2016
).

Supplementary Material

You do not currently have access to this content.