Compressive stresses in sputter deposited thin films are generally assumed to be caused by forward sputtered (peened) built-in particles and entrapped working gas atoms. While the former are assumed to be predominant, the effect of the latter on interaction dynamics and thin film properties is scarcely clarified (concurrent or causative). The overlay of the ion bombardment induced processes renders an isolation of their contribution impracticable. This issue is addressed by two molecular dynamics case studies considering the sputter deposition of Al thin films in Ar working gas. First, Ar atoms are fully retained. Second, they are artificially neglected, as implanted Ar atoms are assumed to outgas anyhow and not alter the ongoing dynamics significantly. Both case studies share common particle dose impinging Al(001) surfaces. Ion energies from 3 to 300 eV and Al/Ar+ flux ratios from 0 to 1 are considered. The surface interactions are simulated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations and characterized in terms of mass density, Ar concentration, biaxial stress, shear stress, ring statistical connectivity profile, Ar gas porosity, Al vacancy density, and root-mean-squared roughness. Implanted Ar atoms are found to form subnanometer sized eventually outgassing clusters for ion energies exceeding 100 eV. They fundamentally govern a variety of surface processes (e.g., forward sputtering/peening) and surface properties (e.g., compressive stresses) in the considered operating regime.

1.
G.
Abadias
,
E.
Chason
,
J.
Keckes
,
M.
Sebastiani
,
G. B.
Thompson
,
E.
Barthel
,
G. L.
Doll
,
C. E.
Murray
,
C. H.
Stoessel
, and
L.
Martinu
,
J. Vac. Sci. Technol. A
36
,
020801
(
2018
).
2.
F.
D’Heurle
and
J.
Harper
,
Thin Solid Films
171
,
81
(
1989
).
3.
H.
Windischmann
,
Crit. Rev. Solid State Mater. Sci.
17
,
547
(
1992
).
4.
P.
Sigmund
, in Sputtering by Particle Bombardment I (Springer, 1981), pp. 9–71.
5.
J. S.-L.
Gibson
,
S.
Rezaei
,
H.
Rueß
,
M.
Hans
,
D.
Music
,
S.
Wulfinghoff
,
J. M.
Schneider
,
S.
Reese
, and
S.
Korte-Kerzel
,
Mater. Res. Lett.
6
,
142
(
2018
).
6.
A.
Vom Felde
,
J.
Fink
,
T.
Müller-Heinzerling
,
J.
Pflüger
,
B.
Scheerer
,
G.
Linker
, and
D.
Kaletta
,
Phys. Rev. Lett.
53
,
922
(
1984
).
7.
A.
Tyagi
,
R.
Khanna
, and
G.
Rao
,
Scr. Metal.
20
,
1245
(
1986
).
8.
S.
Donnelly
and
C.
Rossouw
,
Nucl. Instrum. Methods Phys. Res., Sect. B
13
,
485
(
1986
).
9.
C.
Godet
,
V. M.
da Silva Santana
, and
D. G.
David
,
Thin Solid Films
659
,
70
(
2018
).
10.
R.
Dhaka
and
S.
Barman
,
Phys. Rev. Lett.
104
,
036803
(
2010
).
11.
R.
Dhaka
,
C.
Biswas
,
A.
Shukla
,
S.
Barman
, and
A.
Chakrabarti
,
Phys. Rev. B
77
,
104119
(
2008
).
12.
C.
Biswas
,
A.
Shukla
,
S.
Banik
,
S.
Barman
, and
A.
Chakrabarti
,
Phys. Rev. Lett.
92
,
115506
(
2004
).
13.
S.
Gleich
,
H.
Fager
,
H.
Bolvardi
,
J.-O.
Achenbach
,
R.
Soler
,
K. G.
Pradeep
,
J. M.
Schneider
,
G.
Dehm
, and
C.
Scheu
,
J. Appl. Phys.
122
,
075305
(
2017
).
14.
S.
Gleich
,
R.
Soler
,
H.
Fager
,
H.
Bolvardi
,
J.-O.
Achenbach
,
M.
Hans
,
D.
Primetzhofer
,
J. M.
Schneider
,
G.
Dehm
, and
C.
Scheu
,
Mater. Des.
142
,
203
(
2018
).
15.
E. C.
Neyts
and
P.
Brault
,
Plasma Process. Polym.
14
,
1600145
(
2017
).
16.
D. B.
Graves
and
P.
Brault
,
J. Phys. D: Appl. Phys.
42
,
194011
(
2009
).
17.
S.
Valkealahti
and
R.
Nieminen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
18
,
365
(
1986
).
18.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
19.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
20.
K.
Choudhary
,
T.
Liang
,
A.
Chernatynskiy
,
Z.
Lu
,
A.
Goyal
,
S. R.
Phillpot
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
27
,
015003
(
2015
).
21.
T.
Liang
,
T.-R.
Shan
,
Y.-T.
Cheng
,
B. D.
Devine
,
M.
Noordhoek
,
Y.
Li
,
Z.
Lu
,
S. R.
Phillpot
, and
S. B.
Sinnott
,
Mater. Sci. Eng.: R: Rep.
74
,
255
(
2013
).
22.
J. F.
Ziegler
and
J. P.
Biersack
, in Treatise on Heavy-Ion Science (Springer, 1985), pp. 93–129.
23.
H.
Sha
,
R.
Faller
,
G.
Tetiker
, and
P.
Woytowitz
,
AIChE J.
64
,
338
(
2018
).
24.
A.
Dullweber
,
B.
Leimkuhler
, and
R.
McLachlan
,
J. Chem. Phys.
107
,
5840
(
1997
).
25.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
26.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
27.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A: Math. Gen.
39
,
5629
(
2006
).
28.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
29.
T.
Schneider
and
E.
Stoll
,
Phys. Rev. B
17
,
1302
(
1978
).
30.
B.
Dünweg
and
W.
Paul
,
Int. J. Mod. Phys. C
2
,
817
(
1991
).
31.
Q.
Hou
,
M.
Hou
,
L.
Bardotti
,
B.
Prével
,
P.
Mélinon
, and
A.
Perez
,
Phys. Rev. B
62
,
2825
(
2000
).
32.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
1994
).
33.
M. W.
Thompson
,
Philos. Mag.
18
,
377
(
1968
).
34.
P.
Sigmund
,
Phys. Rev.
184
,
383
(
1969
).
35.
P.
Sigmund
,
Phys. Rev.
187
,
768
(
1969
).
36.
M.
Stepanova
and
S.
Dew
,
J. Vac. Sci. Technol. A
19
,
2805
(
2001
).
37.
E. C.
Neyts
and
A.
Bogaerts
, in Theoretical Chemistry in Belgium (Springer, 2014), pp. 277–288.
38.
K. M.
Bal
and
E. C.
Neyts
,
J. Chem. Phys.
141
,
204104
(
2014
).
39.
M. J.
Mees
,
G.
Pourtois
,
E. C.
Neyts
,
B. J.
Thijsse
, and
A.
Stesmans
,
Phys. Rev. B
85
,
134301
(
2012
).
40.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
41.
A.
Stukowski
,
JOM
66
,
399
(
2014
).
42.
A. P.
Thompson
,
S. J.
Plimpton
, and
W.
Mattson
,
J. Chem. Phys.
131
,
154107
(
2009
).
43.
X.
Yuan
and
A.
Cormack
,
Comput. Mater. Sci.
24
,
343
(
2002
).
44.
K.
Goetzke
and
H.-J.
Klein
,
J. Non-Cryst. Solids
127
,
215
(
1991
).
45.
De Nyago
Tafen
and
D.
Drabold
,
Phys. Rev. B
71
,
054206
(
2005
).
46.
M.
Cobb
,
D.
Drabold
, and
R.
Cappelletti
,
Phys. Rev. B
54
,
12162
(
1996
).
47.
X.
Zhang
and
D.
Drabold
,
Phys. Rev. B
62
,
15695
(
2000
).
48.
S.
Le Roux
and
P.
Jund
,
Comput. Mater. Sci.
49
,
70
(
2010
).
49.
Y.
Lou
and
P. D.
Christofides
,
Comput. Chem. Eng.
29
,
225
(
2004
).
50.
N.
Laegreid
and
G.
Wehner
,
J. Appl. Phys.
32
,
365
(
1961
).
51.
C. H.
Weijsenfeld
, Philips Research Reports Supplements No. 2 (1967).
52.
R.
Behrisch
and
W.
Eckstein
,
Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies
(
Springer Science & Business Media
,
2007
), Vol. 110.
53.
S.
Kim
,
H.
Choi
, and
S.-K.
Choi
,
Thin Solid Films
322
,
298
(
1998
).
You do not currently have access to this content.