To establish a correlation between spin diffusion, spin lifetime, and electron density, we study spin polarization evolution in low-dimensional GaAs semiconductors hosting two-dimensional electron gases by employing time-resolved magneto-optical Kerr effect microscopy. It is shown that for the establishment of the longest spin-lifetime, the variation in the scattering rate with electron density is of more importance than fulfilling the persistent spin helix condition when the Rashba α and Dresselhaus β parameters are balanced. More specifically, regardless of α and β linear dependencies on the electron density, the spin relaxation rate is determined by the spin diffusion coefficient that depends on electron density nonmonotonously. The longest experimental spin-lifetime occurs at an electron density, corresponding to transition from Boltzmann to Fermi–Dirac statistics, which is several times higher than that when the persistent spin helix is expected. These facts highlight the role the electron density may play when considering applications for spintronic devices.

1.
S. D.
Ganichev
,
E. L.
Ivchenko
,
V. V.
Bel'kov
,
S. A.
Tarasenko
,
M.
Sollinger
,
D.
Weiss
,
W.
Wegscheider
, and
W.
Prettl
,
Nature
417
,
153
156
(
2002
).
2.
D.
Khokhriakov
,
A. M.
Hoque
,
B.
Karpiak
, and
S. P.
Dash
,
Nat. Commun.
11
,
3657
(
2020
).
3.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Science
306
,
1910
1913
(
2004
).
4.
M. P.
Walser
,
C.
Reichl
,
W.
Wegscheider
, and
G.
Salis
,
Nat. Phys.
8
,
757
762
(
2012
).
5.
J. D.
Koralek
,
C. P.
Weber
,
J.
Orenstein
,
B. A.
Bernevig
,
S.-C.
Zhang
,
S.
Mack
, and
D. D.
Awschalom
,
Nature
458
,
610
613
(
2009
).
6.
F.
Passmann
,
S.
Anghel
,
C.
Ruppert
,
A.
Bristow
,
A.
Poshakinskiy
,
S. A.
Tarasenko
, and
M.
Betz
,
Semicond. Sci. Technol.
34
, 093002 (
2019
).
7.
G.
Dresselhaus
,
Phys. Rev.
100
,
580
586
(
1955
).
8.
E. I.
Rashba
,
Sov. Phys. Solid State
2
,
1109
(
1960
).
9.
V. N.
Gridnev
,
J. Experimental Theor. Phys. Lett.
76
,
502
506
(
2002
).
10.
B. A.
Bernevig
,
J.
Orenstein
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
97
,
236601
(
2006
).
11.
J.
Schliemann
,
J. C.
Egues
, and
D.
Loss
,
Phys. Rev. Lett.
90
,
146801
(
2003
).
12.
A. V.
Poshakinskiy
and
S. A.
Tarasenko
,
Phys. Rev. B
92
,
045308
(
2015
).
13.
G. J.
Ferreira
,
F. G. G.
Hernandez
,
P.
Altmann
, and
G.
Salis
,
Phys. Rev. B
95
,
12
(
2017
).
14.
M.
Studer
,
G.
Salis
,
K.
Ensslin
,
D. C.
Driscoll
, and
A. C.
Gossard
,
Phys. Rev. Lett.
103
,
027201
(
2009
).
15.
J. N.
Moore
,
J.
Hayakawa
,
T.
Mano
,
T.
Noda
, and
G.
Yusa
,
Phys. Rev. Lett.
118
,
076802
(
2017
).
16.
V. P.
Kochereshko
,
G. V.
Astakhov
,
D. R.
Yakovlev
,
W.
Ossau
,
G.
Landwehr
,
T.
Wojtowicz
,
G.
Karczewski
, and
J.
Kossut
,
Phys. Status Solidi B
221
,
345
348
(
2000
).
17.
S.
Anghel
,
A.
Singh
,
F.
Passmann
,
H.
Iwata
,
J. N.
Moore
,
G.
Yusa
,
X.
Li
, and
M.
Betz
,
Phys. Rev. B
94
,
035303
(
2016
).
18.
T.
Henn
,
T.
Kießling
,
L. W.
Molenkamp
,
D.
Reuter
,
A. D.
Wieck
,
K.
Biermann
,
P. V.
Santos
, and
W.
Ossau
,
Phys. Status Solidi B
251
,
1839
1849
(
2014
).
19.
T.
Henn
,
T.
Kiessling
,
W.
Ossau
,
L. W.
Molenkamp
,
K.
Biermann
, and
P. V.
Santos
,
Rev. Sci. Instrum.
84
,
123903
(
2013
).
20.
S.
Anghel
,
F.
Passmann
,
A.
Singh
,
C.
Ruppert
,
A. V.
Poshakinskiy
,
S. A.
Tarasenko
,
J. N.
Moore
,
G.
Yusa
,
T.
Mano
,
T.
Noda
,
X.
Li
,
A. D.
Bristow
, and
M.
Betz
,
Phys. Rev. B
97
,
125410
(
2018
).
21.
J.
Hegarty
,
L.
Goldner
, and
M. D.
Sturge
,
Phys. Rev. B
30
,
7346
7348
(
1984
).
22.
S.
Anghel
,
A. V.
Poshakinskiy
,
K.
Schiller
,
F.
Passmann
,
C.
Ruppert
,
S. A.
Tarasenko
,
G.
Yusa
,
T.
Mano
,
T.
Noda
, and
M.
Betz
,
Phys. Rev. B
103
,
035429
(
2021
).
23.
S.
Anghel
,
F.
Passmann
,
K. J.
Schiller
,
J. N.
Moore
,
G.
Yusa
,
T.
Mano
,
T.
Noda
,
M.
Betz
, and
A. D.
Bristow
,
Phys. Rev. B
101
, 155414 (
2020
).
24.
F.
Passmann
,
A. D.
Bristow
,
J. N.
Moore
,
G.
Yusa
,
T.
Mano
,
T.
Noda
,
M.
Betz
, and
S.
Anghel
,
Phys. Rev. B
99
,
125404
(
2019
).
25.
P.
Altmann
,
F. G. G.
Hernandez
,
G. J.
Ferreira
,
M.
Kohda
,
C.
Reichl
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. Lett.
116
,
196802
(
2016
).
26.
M.
Studer
,
M. P.
Walser
,
S.
Baer
,
H.
Rusterholz
,
S.
Schön
,
D.
Schuh
,
W.
Wegscheider
,
K.
Ensslin
, and
G.
Salis
,
Phys. Rev. B
82
,
235320
(
2010
).
27.
N. S.
Averkiev
and
L. E.
Golub
,
Phys. Rev. B
60
,
15582
15584
(
1999
).
28.
G.
Salis
,
M. P.
Walser
,
P.
Altmann
,
C.
Reichl
, and
W.
Wegscheider
,
Phys. Rev. B
89
,
045304
(
2014
).
29.
F.
Passmann
,
S.
Anghel
,
T.
Tischler
,
A. V.
Poshakinskiy
,
S. A.
Tarasenko
,
G.
Karczewski
,
T.
Wojtowicz
,
A. D.
Bristow
, and
M.
Betz
,
Phys. Rev. B
97
,
201413(R)
(
2018
).
30.
I.
D’Amico
and
G.
Vignale
,
Phys. Rev. B
62
,
4853
4857
(
2000
).
31.
C. P.
Weber
,
N.
Gedik
,
J. E.
Moore
,
J.
Orenstein
,
J.
Stephens
, and
D. D.
Awschalom
,
Nature
437
,
1330
1333
(
2005
).
32.
M. M.
Glazov
and
E. L.
Ivchenko
,
J. Experimental Theor. Phys.
99
,
1279
1290
(
2004
).
33.
J.
Shah
,
Solid-State Electron.
21
,
43
50
(
1978
).
34.
C. H.
Yang
,
J. M.
Carlson-Swindle
,
S. A.
Lyon
, and
J. M.
Worlock
,
Phys. Rev. Lett.
55
,
2359
2361
(
1985
).
You do not currently have access to this content.