Barium titanate is a brittle, lead free ferroelectric and piezoelectric ceramic used in patterned and thin film forms in micro- and nano-scale electronic devices. Both during deposition and eventually during service, this material system develops stresses due to different loads acting on the system, which can lead to its failure due to cracking in the films and/or interface delamination. In situ microcantilever bending based fracture experiments and tensile tests based on shear lag tests in combination with digital image correlation were used to understand the cracking behavior of barium titanate films when deposited on flexible substrates. For the first time, the fracture behavior of these nanocrystalline barium titanate films has been quantified in terms of fracture toughness, fracture strength, and interface shear stresses for different film thicknesses. Critical defect size is estimated using the above information as a function of film thickness. It is found that damage tolerance in terms of fracture strength depends on film thickness. Furthermore, compared to a bulk single crystal, barium titanate fracture resistance of the nanocrystalline thin films is reduced. Both effects need to be considered in engineering design of reliable devices employing micro- and nano-scale barium titanate thin film structures.

1.
J.
Gao
,
D.
Xue
,
W.
Liu
,
C.
Zhou
, and
X.
Ren
,
Actuators
6
, 1–20. (
2017
).
2.
N. G.
Mathews
,
A. K.
Saxena
,
C.
Kirchlechner
,
G.
Dehm
, and
B. N.
Jaya
,
Scr. Mater.
182
,
68
(
2020
).
3.
M.
Cernea
,
J. Optoelectron. Adv. Mater.
6
,
1349
(
2004
).
4.
L.
Mazet
,
S. M.
Yang
,
S. V.
Kalinin
,
S.
Schamm-Chardon
, and
C.
Dubourdieu
,
Sci. Technol. Adv. Mater.
16
,
036005
(
2015
).
5.
Y.
Yang
,
Z.
Wang
,
J.
Li
, and
D.
Viehland
,
J. Nanomater.
756319, 1–5 (
2010
).
6.
G.
Niu
,
S.
Yin
,
G.
Saint-Girons
,
B.
Gautier
,
P.
Lecoeur
,
V.
Pillard
,
G.
Hollinger
, and
B.
Vilquin
,
Microelectron. Eng.
88
,
1232
(
2011
).
7.
L.
Qiao
and
X.
Bi
,
Ferroelectric- Material Aspects
(Intechopen,
2011
), pp.
363
388
.
8.
T.
Lipinsky
,
J.
Schubert
, and
C.
Buchal
,
J. Opt. Soc. Am. B
22
,
913
(
2005
).
9.
H.
Elangovan
,
M.
Barzilay
,
S.
Seremi
,
N.
Cohen
,
Y.
Jiang
,
L. W.
Martin
, and
Y.
Ivry
,
ACS Nano
14
,
5053
(
2020
).
10.
G.
Dong
,
S.
Li
,
M.
Yao
,
Z.
Zhou
,
Y.-Q.
Zhang
,
X.
Han
,
Z.
Luo
,
J.
Yao
,
B.
Peng
,
Z.
Hu
,
H.
Huang
,
T.
Jia
,
J.
Li
,
W.
Ren
,
Z.-G.
Ye
,
X.
Ding
,
J.
Sun
,
C.-W.
Nan
,
L.-Q.
Chen
,
J.
Li
, and
M.
Liu
,
Science
366
,
475
(
2019
).
11.
H.
Jin
,
W. Y.
Lu
,
M. J.
Cordill
, and
K.
Schmidegg
,
Exp. Mech.
51
,
219
(
2011
).
12.
M. J.
Cordill
,
A.
Taylor
,
J.
Schalko
, and
G.
Dehm
,
Metall. Mater. Trans. A
41
,
870
(
2010
).
13.
D. C.
Agrawal
and
R.
Raj
,
Acta Metall.
37
,
1265
(
1989
).
14.
G.
Dehm
,
B. N.
Jaya
,
R.
Raghavan
, and
C.
Kirchlechner
,
Acta Mater.
142
,
248
(
2018
).
15.
M. J.
Cordill
,
F. D.
Fischer
,
F. G.
Rammerstorfer
, and
G.
Dehm
,
Acta Materialia
58
,
5520
(
2010
).
16.
A. A.
Taylor
,
M. J.
Cordill
, and
G.
Dehm
,
Philos. Mag.
92
,
3363
(
2012
).
17.
B.
Völker
,
C.
Du
,
H.
Fager
,
H.
Rueß
,
R.
Soler
,
C.
Kirchlechner
,
G.
Dehm
, and
J. M.
Schneider
,
Surf. Coat. Technol.
390
,
125645
(
2020
).
18.
K.
Yamamoto
,
Y.
Kawaguchi
,
T.
Yasunaga
, and
T.
Sato
,
Surf. Coat. Technol.
113
,
227
(
1999
).
19.
S.
Djaziri
,
S.
Gleich
,
H.
Bolvardi
,
C.
Kirchlechner
,
M.
Hans
,
C.
Scheu
,
J. M.
Schneider
, and
G.
Dehm
,
Surf. Coat. Technol.
289
,
213
(
2016
).
20.
M.
Alfreider
,
J.
Zechner
, and
D.
Kiener
,
JOM
72
,
4551
(
2020
).
21.
A. K.
Mishra
,
H.
Gopalan
,
M.
Hans
,
C.
Kirchlechner
,
J. M.
Schneider
,
G.
Dehm
, and
B. N.
Jaya
,
Acta Mater.
228
,
117777
(
2022
).
22.
K.
Matoy
,
H.
Schönherr
,
T.
Detzel
,
T.
Schöberl
,
R.
Pippan
,
C.
Motz
, and
G.
Dehm
,
Thin Solid Films
518
,
247
(
2009
).
23.
B. N.
Jaya
,
C.
Kirchlechner
, and
G.
Dehm
,
J. Mater. Res.
30
,
686
(
2015
).
24.
N. G.
Mathews
,
A. K.
Mishra
, and
B. N.
Jaya
,
Theor. Appl. Fract. Mech.
115
,
103069
(
2021
).
25.
ASTM C20-00
(
ASTM International
,
West Conshohocken
,
PA
,
2015
), p.
1
.
26.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
27.
R.
Raj
,
A.
Saha
,
L.
An
,
D. P. H.
Hasselman
, and
P.
Ernst
,
Acta Mater.
50
,
1165
(
2002
).
28.
V. C.
Jobin
,
R.
Raj
, and
S. L.
Phoenix
,
Acta Metall. Mater.
40
,
2269
(
1992
).
29.
G.
Singh
,
Y.
Yu
,
F.
Ernst
, and
R.
Raj
,
Acta Mater.
55
,
3049
(
2007
).
30.
P.
Scherrer
, in
Kolloidchemie Ein Lehrbuch
, edited by
R.
Zsigmondy
(
Springer
,
Berlin
,
1912
), pp.
387
409
.
31.
F.
Cordero
,
J. Appl. Phys.
123
,
094103
(
2018
).
32.
G. A.
Schneider
and
V.
Heyer
,
J. Eur. Ceram. Soc.
19
,
1299
(
1999
).
33.
S.
Brinckmann
,
C.
Kirchlechner
, and
G.
Dehm
,
Scr. Mater.
127
,
76
(
2017
).
34.
D. E. J.
Armstrong
,
A. J.
Wilkinson
, and
S. G.
Roberts
,
J. Mater. Res.
24
,
3268
(
2009
).
35.
B.
Gong
,
D.
Frazer
,
B.
Shaffer
,
H. C.
Lim
,
P.
Hosemann
, and
P.
Peralta
,
J. Nucl. Mater.
557
,
153210
(
2021
).
36.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
(Cambridge University Press,
2003
).
37.
J. M.
Blamey
and
T. V.
Parry
,
J. Mater. Sci.
28
,
4988
(
1993
).
38.
L.
Yingwei
,
C.
Kangjie
,
L.
Chang
,
J.
Peng
,
Q.
Ke
,
G.
Peng
,
W.
Jie
,
R.
Fuzeng
,
S.
Qingping
,
C.
Longqing
, and
L.
Jiangyu
,
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2025255118
(
2021
).
39.
P.
Panjan
,
A.
Drnovšek
,
P.
Gselman
,
M.
Čekada
, and
M.
Panjan
,
Coatings
10
,
447
(
2020
).
40.
P.
Wellner
,
O.
Kraft
,
G.
Dehm
,
J.
Andersons
, and
E.
Arzt
,
Acta Mater.
52
,
2325
(
2004
).
You do not currently have access to this content.