This paper studies the performance of laser spot thermography (LST) in defect detection on a mild steel sample at different temperatures (30–600 °C). In laser spot thermography, a laser spot is used to scan over the surface of the sample and the thermal profile is monitored using a thermal camera. For checking the feasibility/capability of laser spot thermography in defect detection under higher temperatures, a three-dimensional numerical model is developed using a commercial FE software package. This FE model is used to understand the heat transfer phenomenon during defect detection at higher temperatures, even after oxidation temperature. The influence of the oxide layer formation (scale) at higher temperatures (above 500 °C) in defect detection is established using the validated model. The thermal properties and optical properties of this oxide layer are different from those of the base metal; this will lead to a drastic variation in the thermal profile after the oxidation temperature. An oxide layer at 600 °C is introduced in the improved numerical model as a thin resistive layer at the top surface with a thickness of 50 μm. The thermal properties of the layer are assigned as the scale properties. FE modeling results show better agreement with experimental results even at 600 °C. Thus, the applicability of LST in high temperatures is experimentally proved.

1.
J. R.
Davis
,
ASM Handbook: Non-Destructive Evaluation and Quality Control, Vol. 17
(
ASM International
,
1989
).
2.
K.
Ikonen
,
K.-E.
Peiponen
, and
T.
Asakura
, “
Real-time thermography in metal inspection
,”
Opt. Lasers Eng.
17
(
1
),
47
49
(
1992
).
3.
S. E.
Burrows
,
A.
Rashed
,
D. P.
Almond
, and
S.
Dixon
, “
Combined laser spot imaging thermography and ultrasonic measurements for crack detection
,”
NonDestructive Test. Eval.
22
(
2–3
),
217
227
(
2007
).
4.
X.
Maldague
,
F.
Galmiche
, and
A.
Ziadi
, “
Advances in pulsed phase thermography
,”
Infrared Phys. Technol.
43
(
3–5
),
175
181
(
2002
).
5.
N.
Montinaro
,
D.
Cerniglia
, and
G.
Pitarresi
, “
Detection and characterisation of disbonds on Fibre Metal Laminate hybrid composites by flying laser spot thermography
,”
Compos., Part B
108
,
164
173
(
2017
).
6.
N.
Puthiyaveettil
,
S.
Krishna
,
R.
Kidangan
,
S.
Unnikrishnakurup
, and
C. V.
Krishnamurthy
, “
In-line laser thermography for crack detection at elevated temperature: A numerical modeling study
,” in
QIRT 2016 Proceeding
s (NDT,
2016
), pp.
588
596
.
7.
J.
Schlichting
,
M.
Ziegler
,
A.
Dey
,
C.
Maierhofer
, and
M.
Kreutzbruck
, “
Efficient data evaluation for thermographic crack detection
,”
Quant. Infrared Thermogr. J.
8
(
1
),
119
123
(
2011
).
8.
N.
Puthiyaveettil
,
K.
Renil Thomas
,
S.
Unnikrishnakurup
,
P.
Myrach
,
M.
Ziegler
, and
K.
Balasubramaniam
, “
Laser line scanning thermography for surface-breaking crack detection: Modeling and experimental study,”
Infrared Phys. Technol.
104
,
103141
(
2020
).
9.
R.
Yang
and
Y.
He
, “
Optically and non-optically excited thermography for composites: A review
,”
Infrared Phys. Technol.
75
,
26
50
(
2016
).
10.
Y.-K.
An
,
J.
Min Kim
, and
H.
Sohn
, “
Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures
,”
NDT&E Int.
65
,
54
63
(
2014
).
11.
P.
Broberg
, “
Surface crack detection in welds using thermography
,”
NDT&E Int.
57
,
69
73
(
2013
).
12.
T.
Li
,
D. P.
Almond
, and
D. A. S.
Rees
, “
Crack imaging by scanning laser line thermography
,”
AIP Conf. Proc.
1335
(
1
),
407
414
(
2011
).
13.
D.
Jiao
,
Z.
Liu
,
W.
Zhu
,
W.
Shi
, and
H.
Xie
, “
Linear laser fast scanning thermography NDT for artificial disbond defects in thermal barrier coatings
,”
Opt. Express
25
,
2
3
(
2017
).
14.
S. E.
Burrows
,
S.
Dixon
,
S. G.
Pickering
,
T.
Li
, and
D. P.
Almond
, “
Thermographic detection of surface-breaking defects using a scanning laser source
,”
NDT&E Int.
44
(
7
),
589
596
(
2011
).
15.
V. P.
Vavilov
, “
Modeling thermal NDT problems
,”
Int. J. Heat Mass Transfer
72
,
75
86
(
2014
).
16.
C.
Bu
,
Q.
Tang
,
Y.
Liu
,
X.
Jin
,
Z.
Sun
, and
Z.
Yan
, “
A theoretical study on vertical finite cracks detection using pulsed laser spot thermography (PLST)
,”
Infrared Phys. Technol.
71
,
475
480
(
2015
).
17.
J.
Schlichting
,
C.
Maierhofer
, and
M.
Kreutzbruck
, “
Crack sizing by laser-excited thermography
,”
NDT&E Int.
45
(
1
),
133
140
(
2012
).
18.
N. W.
Pech-May
,
A.
Oleaga
,
A.
Mendioroz
, and
A.
Salazar
, “
Fast characterization of the width of vertical cracks using pulsed laser spot infrared thermography
,”
J. Nondestr. Eval.
35
(
2
),
1
10
(
2016
).
19.
J.
Qiu
,
C.
Pei
,
H.
Liu
, and
Z.
Chen
, “
Quantitative evaluation of surface crack depth with laser spot thermography
,”
Int. J. Fatigue
101
,
80
85
(
2017
).
20.
A.
Salazar
,
A.
Mendioroz
, and
A.
Oleaga
, “
Flying spot thermography: Quantitative assessment of thermal diffusivity and crack width
,”
J. Appl. Phys.
127
(
13
),
131101
(
2020
).
21.
H.
Kogelnik
and
T.
Li
, “
Laser beams and resonators
,”
Appl. Optics
5
(
10
),
1550
(
1966
).
22.
H.
Schwede
and
R.
Kramer
, “
High performance laser beam diagnonics in industrisal environment
,” in
Proceeding of International Congress on Application of Lasers & Electro-Optics (ICALEAO)
,
Orlando, USA
(LIA,
1998
).
23.
G. R. B. E.
Römer
and
A. J.
Huis in ‘t Veld
. “
Matlab laser toolbox
,” in
Proceedings of the 29th International Congress on Applications of Lasers & ElectroOptics (ICA-LEO)
,
Anaheim, CA, USA
,
September 26–30
(JLA,
2010
).
24.
C.
Glorieux
,
R.
Li Voti
,
J.
Thoen
,
M.
Bertolotti
, and
C.
Sibilia
, “
Depth profiling of thermally inhomogeneous materials by neural network recognition of photothermal time domain data
,”
J. Appl. Phys.
85
(
10
),
7059
7063
(
1999
).
25.
C.
Glorieux
,
R.
Li Voti
,
J.
Thoen
,
M.
Bertolotti
, and
C.
Sibilia
, “
Photothermal depth profiling: Analysis of reconstruction errors
,”
Inverse Probl.
15
(
5
),
1149
1163
(
1999
).
26.
L.
Gaverina
,
M.
Bensalem
,
A.
Bedoya
,
J.
González
,
A.
Sommier
,
J. L.
Battaglia
,
A.
Salazar
 et al, “
Constant velocity flying spot for the estimation of in-plane thermal diffusivity on anisotropic materials
,”
Int. J. Thermal Sci.
145
,
106000
(
2019
).
27.
A.
Bedoya
,
J.
González
,
J.
Rodríguez-Aseguinolaza
,
A.
Mendioroz
,
A.
Sommier
,
J. C.
Batsale
,
C.
Pradere
, and
A.
Salazar
, “
Measurement of in-plane thermal diffusivity of solids moving at constant velocity using laser spot infrared thermography
,”
Measurement
134
,
519
526
(
2019
).
28.
R. L.
Voti
and
M.
Bertolotti
, “
Thermal waves emitted by moving sources and the Doppler effect
,”
Int. J. Heat Mass Transfer
176
,
121098
(
2021
).
29.
M.
Wang
 et al, “
Quantitative lock-in thermography imaging of thermal-wave spatial profiles and thermophysical property measurements in solids with inner corner geometries using thermal-wave field theory
,”
J. Appl. Phys.
124
(
20
),
205106
(
2018
).
30.
P.
Myrach
,
B.
Polomski
,
E.
Le Claire
,
S.
Unnikrishnakurup
,
N.
Vengara
,
K.
Balasubramaniam
, and
M.
Ziegler
, “
Thermographic crack detection in hot steel surfaces
,” in
19th World Conference on Non-Destructive Testing 2016
,
Munich, Germany
(NDT,
2016
), Vol. 21.
31.
A. M.
Rubenchik
,
S. S. Q.
Wu
,
V.
Keith Kanz
,
M. M.
LeBlanc
,
W.
Howard Lowdermilk
,
M. D.
Rotter
, and
J. R.
Stanley
, “
Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces
,”
Opt. Eng.
53
(
12
),
122506
(
2014
).
32.
H.
Abuluwefa
,
Scale Formation in a Walking-Beam Steel Reheat Furnace
(
Mining and Metal1urgical Engineering, McGill University
,
1992
).
33.
K.
Veselý Zdene
,
H.
Milan
, and
M.
Jir
, “
3D model of laser treatment by a moving heat source with general distribution of energy in the beam
,”
Appl. Opt.
55
, D140-D150 (2016).
34.
N.
Puthiyaveettil
 et al, “
In-line laser thermography for crack detection at elevated temperature: A numerical modeling study
,” in
13th International Conference on Quantitative Infrared Thermography
(NDT,
2016
).
35.
J.
Qiu
 et al, “
Detection of surface cracks by laser spot thermography at elevated temperature
,”
Int. J. Appl. Electromagn. Mech.
59
(
4
),
1553
1559
(
2019
).
36.
N.
Puthiyaveettil
,
K.
Renil Thomas
,
P.
Myrach
,
M.
Ziegler
,
P.
Rajagopal
, and
K.
Balasubramaniam
, “
Defect detection in steel bars up to 600 °C using laser line thermography
,”
Infrared Phys. Technol.
111
,
103565
(
2020
).
37.
See https://www.comsol.co.in/ for “
COMSOL MultiphysicsTM
.”
38.
M.
Safari
and
M.
Farzin
, “
A new method for production of double-curvature dome-shaped part: Statistical analysis of the effects of process parameters on the radius of curvature of obtained dome shape
,”
J. Ship Prod. Des.
34
(
2
),
85
93
(
2018
).
39.
Y. S.
Touloukian
and
D. P.
DeWitt
,
Thermal Radiative Properties Metallic Elements and Alloys. Thermophysical Properties of Matter: The TPRC Data Series (Vol. 7)
(
I.F.I./Plenum Data Corporation
,
New York
,
1970
).
40.
J.
González
 et al, “
Fast sizing of the width of infinite vertical cracks using constant velocity flying-spot thermography
,”
NDT&E Int.
103
,
166
172
(
2019
).
You do not currently have access to this content.