Synthetic antiferromagnet (SAF) nanostructures with an interfacial Dzyaloshinskii–Moriya interaction can host topologically distinct spin textures, such as skyrmions, and therefore, are regarded as promising candidates for both spintronics and magnonics applications. Here, we present comprehensive micromagnetic simulations of such material systems and discuss the rich phase diagrams that contain various types of magnetic configurations. Aside from the static properties, we further discuss the resonant excitations of the calculated magnetic states, which include individual skyrmions and skyrmioniums. Finally, the internal modes of SAF skyrmion clusters are studied and discussed in the context of magnetic sensing applications based on the dynamic fingerprint in broadband ferromagnetic resonance measurements.

1.
R. A.
Duine
,
K.-J.
Lee
,
S. S. P.
Parkin
, and
M. D.
Stiles
, “
Synthetic antiferromagnetic spintronics
,”
Nat. Phys.
14
,
217
219
(
2018
).
2.
H. J.
Waring
,
N. A. B.
Johansson
,
I. J.
Vera-Marun
, and
T.
Thomson
, “
Zero-field optic mode beyond 20 GHz in a synthetic antiferromagnet
,”
Phys. Rev. Appl.
13
,
034035
(
2020
).
3.
T.
Dohi
,
S.
DuttaGupta
,
S.
Fukami
, and
H.
Ohno
, “
Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles
,”
Nat. Commun.
10
,
5153
(
2019
).
4.
C.
Dai
and
F.
Ma
, “
Strong magnon–magnon coupling in synthetic antiferromagnets
,”
Appl. Phys. Lett.
118
,
112405
(
2021
).
5.
S.
Sorokin
,
R. A.
Gallardo
,
C.
Fowley
,
K.
Lenz
,
A.
Titova
,
G. Y. P.
Atcheson
,
G.
Dennehy
,
K.
Rode
,
J.
Fassbender
,
J.
Lindner
, and
A. M.
Deac
, “
Magnetization dynamics in synthetic antiferromagnets: Role of dynamical energy and mutual spin pumping
,”
Phys. Rev. B
101
,
144410
(
2020
).
6.
S. S. P.
Parkin
,
R.
Bhadra
, and
K. P.
Roche
, “
Oscillatory magnetic exchange coupling through thin copper layers
,”
Phys. Rev. Lett.
66
,
2152
2155
(
1991
).
7.
P.
Bruno
and
C.
Chappert
, “
Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer
,”
Phys. Rev. Lett.
67
,
1602
1605
(
1991
).
8.
I.
Dzyaloshinskii
, “
A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solids
4
,
241
255
(
1958
).
9.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
98
(
1960
).
10.
W.
Legrand
,
D.
Maccariello
,
F.
Ajejas
,
S.
Collin
,
A.
Vecchiola
,
K.
Bouzehouane
,
N.
Reyren
,
V.
Cros
, and
A.
Fert
, “
Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
,”
Nat. Mater.
19
,
34
42
(
2020
).
11.
R.
Chen
,
Y.
Gao
,
X.
Zhang
,
R.
Zhang
,
S.
Yin
,
X.
Chen
,
X.
Zhou
,
Y.
Zhou
,
J.
Xia
,
Y.
Zhou
,
S.
Wang
,
F.
Pan
,
Y.
Zhang
, and
C.
Song
, “
Realization of isolated and high-density skyrmions at room temperature in uncompensated synthetic antiferromagnets
,”
Nano Lett.
20
,
3299
3305
(
2020
).
12.
R.
Juge
,
N.
Sisodia
,
J. U.
Larrañaga
,
Q.
Zhang
,
V. T.
Pham
,
K. G.
Rana
,
B.
Sarpi
,
N.
Mille
,
S.
Stanescu
,
R.
Belkhou
,
M.-A.
Mawass
,
N.
Novakovic-Marinkovic
,
F.
Kronast
,
M.
Weigand
,
J.
Gräfe
,
S.
Wintz
,
S.
Finizio
,
J.
Raabe
,
L.
Aballe
,
M.
Foerster
,
M.
Belmeguenai
,
L.
Buda-Prejbeanu
,
J. M.
Shaw
,
H. T.
Nembach
,
L.
Ranno
,
G.
Gaudin
, and
O.
Boulle
, “Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultrafast laser illumination,” arXiv:2111.11878 (2021).
13.
N.
Mathur
,
M. J.
Stolt
, and
S.
Jin
, “
Magnetic skyrmions in nanostructures of non-centrosymmetric materials
,”
APL Mater.
7
,
120703
(
2019
).
14.
M.
Lonsky
and
A.
Hoffmann
, “
Coupled skyrmion breathing modes in synthetic ferri- and antiferromagnets
,”
Phys. Rev. B
102
,
104403
(
2020
).
15.
M.
Lonsky
and
A.
Hoffmann
, “
Dynamic excitations of chiral magnetic textures
,”
APL Mater.
8
,
100903
(
2020
).
16.
L.
Qiu
,
L.
Shen
,
X.
Zhang
,
Y.
Zhou
,
G.
Zhao
,
W.
Xia
,
H.-B.
Luo
, and
J. P.
Liu
, “
Interlayer coupling effect on skyrmion dynamics in synthetic antiferromagnets
,”
Appl. Phys. Lett.
118
,
082403
(
2021
).
17.
T. B.
Winkler
,
K.
Litzius
,
A.
de Lucia
,
M.
Weißenhofer
,
H.
Fangohr
, and
M.
Kläui
, “
Skyrmion states in disk geometry
,”
Phys. Rev. Appl.
16
,
044014
(
2021
).
18.
L.
Ji
,
R.
Zhao
,
C.
Hu
,
W.
Chen
,
Y.
Chen
, and
X.
Zhang
, “
Transformation from antiferromagnetic target skyrmion to antiferromagnetic skyrmion by unzipping process through a confined nanostructure
,”
J. Phys.: Condens. Matter
33
,
425801
(
2021
).
19.
S.
Gliga
,
A.
Kákay
,
R.
Hertel
, and
O. G.
Heinonen
, “
Spectral analysis of topological defects in an artificial spin-ice lattice
,”
Phys. Rev. Lett.
110
,
117205
(
2013
).
20.
M. J.
Donahue
and
D. G.
Porter
, “OOMMF user’s guide version 1.0,” Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD, 1999.
21.
S.
Rohart
and
A.
Thiaville
, “
Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
88
,
184422
(
2013
).
22.
G.
Siracusano
,
R.
Tomasello
,
A.
Giordano
,
V.
Puliafito
,
B.
Azzerboni
,
O.
Ozatay
,
M.
Carpentieri
, and
G.
Finocchio
, “
Magnetic radial vortex stabilization and efficient manipulation driven by the Dzyaloshinskii-Moriya interaction and spin-transfer torque
,”
Phys. Rev. Lett.
117
,
087204
(
2016
).
23.
M.
Beg
,
R.
Carey
,
W.
Wang
,
D.
Cortés-Ortuño
,
M.
Vousden
,
M.-A.
Bisotti
,
M.
Albert
,
D.
Chernyshenko
,
O.
Hovorka
,
R. L.
Stamps
, and
H.
Fangohr
, “
Ground state search, hysteretic behaviour and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures
,”
Sci. Rep.
5
,
17137
(
2015
).
24.
J.-V.
Kim
,
F.
Garcia-Sanchez
,
J.
Sampaio
,
C.
Moreau-Luchaire
,
V.
Cros
, and
A.
Fert
, “
Breathing modes of confined skyrmions in ultrathin magnetic dots
,”
Phys. Rev. B
90
,
064410
(
2014
).
25.
J.-M.
Hu
,
T.
Yang
, and
L.-Q.
Chen
, “
Stability and dynamics of skyrmions in ultrathin magnetic nanodisks under strain
,”
Acta Mater.
183
,
145
154
(
2020
).
26.
C.
Song
,
Y.
Ma
,
C.
Jin
,
J.
Wang
,
H.
Xia
,
J.
Wang
, and
Q.
Liu
, “
Field-tuned spin excitation spectrum of kπ skyrmion
,”
New J. Phys.
21
,
083006
(
2019
).
27.
K. Y.
Guslienko
,
B. A.
Ivanov
,
V.
Novosad
,
Y.
Otani
,
H.
Shima
, and
K.
Fukamichi
, “
Eigenfrequencies of vortex state excitations in magnetic submicron-size disks
,”
J. Appl. Phys.
91
,
8037
(
2002
).
28.
S.-B.
Choe
, “
Vortex core-driven magnetization dynamics
,”
Science
304
,
420
422
(
2004
).
29.
C. E. A.
Barker
,
E.
Haltz
,
T. A.
Moore
, and
C. H.
Marrows
, “Breathing modes of skyrmion strings in a synthetic antiferromagnet,” arXiv:2112.05481 (2021).
30.
J.
Castell-Queralt
,
L.
González-Gómez
,
N.
Del-Valle
, and
C.
Navau
, “
Exploiting symmetries in skyrmionic micromagnetic simulations: Cylindrical and radial meshes
,”
J. Magn. Magn. Mater.
549
,
168972
(
2022
).
31.
M.
Yan
,
H.
Wang
, and
C.
Campbell
, “
Unconventional magnetic vortex structures observed in micromagnetic simulations
,”
J. Magn. Magn. Mater.
320
,
1937
1944
(
2008
).
32.
V.
Karakas
,
A.
Gokce
,
A. T.
Habiboglu
,
S.
Arpaci
,
K.
Ozbozduman
,
I.
Cinar
,
C.
Yanik
,
R.
Tomasello
,
S.
Tacchi
,
G.
Siracusano
,
M.
Carpentieri
,
G.
Finocchio
,
T.
Hauet
, and
O.
Ozatay
, “
Observation of magnetic radial vortex nucleation in a multilayer stack with tunable anisotropy
,”
Sci. Rep.
8
,
7180
(
2018
).
33.
S.-Z.
Lin
,
C.
Reichhardt
, and
A.
Saxena
, “
Manipulation of skyrmions in nanodisks with a current pulse and skyrmion rectifier
,”
Appl. Phys. Lett.
102
,
222405
(
2013
).
34.
K. Y.
Guslienko
,
V.
Novosad
,
Y.
Otani
,
H.
Shima
, and
K.
Fukamichi
, “
Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays
,”
Phys. Rev. B
65
,
024414
(
2001
).
35.
B.
Rana
and
Y.
Otani
, “
Towards magnonic devices based on voltage-controlled magnetic anisotropy
,”
Commun. Phys.
2
,
90
(
2019
).
36.
J.
Suwardy
,
M.
Goto
,
Y.
Suzuki
, and
S.
Miwa
, “
Voltage-controlled magnetic anisotropy and Dzyaloshinskii-Moriya interactions in CoNi/MgO and CoNi/Pd/MgO
,”
Jpn. J. Appl. Phys.
58
,
060917
(
2019
).
37.
A. O.
Leon
,
J.
d’Albuquerque e Castro
,
J. C.
Retamal
,
A. B.
Cahaya
, and
D.
Altbir
, “
Manipulation of the RKKY exchange by voltages
,”
Phys. Rev. B
100
,
014403
(
2019
).
38.
O.
Hellwig
,
A.
Berger
,
J. B.
Kortright
, and
E. E.
Fullerton
, “
Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films
,”
J. Magn. Magn. Mater.
319
,
13
55
(
2007
).
39.
M.
Ponsudana
,
R.
Amuda
,
A.
Brinda
, and
N.
Kanimozhi
, “
Investigation on the excitation of magnetic skyrmionium in a nanostructure
,”
J. Supercond. Novel Magn.
35
,
805
817
(
2022
).
40.
F.
Tejo
,
E.
Saavedra
,
J. C.
Denardin
, and
J.
Escrig
, “
Dynamic susceptibility of skyrmion clusters in Co/Pt nanodots
,”
Appl. Phys. Lett.
117
,
152401
(
2020
).
41.
F.
Tejo
,
F.
Velozo
,
R. G.
Elías
, and
J.
Escrig
, “
Oscillations of skyrmion clusters in Co/Pt multilayer nanodots
,”
Sci. Rep.
10
,
16517
(
2020
).
42.
E.
Saavedra
,
F.
Tejo
,
N.
Vidal-Silva
, and
J.
Escrig
, “
Magnonic key based on skyrmion clusters
,”
Sci. Rep.
11
,
23010
(
2021
).
43.
V. P.
Kravchuk
,
O.
Gomonay
,
D. D.
Sheka
,
D. R.
Rodrigues
,
K.
Everschor-Sitte
,
J.
Sinova
,
J.
van den Brink
, and
Y.
Gaididei
, “
Spin eigenexcitations of an antiferromagnetic skyrmion
,”
Phys. Rev. B
99
,
184429
(
2019
).
44.
R. F. L.
Evans
,
W. J.
Fan
,
P.
Chureemart
,
T. A.
Ostler
,
M. O. A.
Ellis
, and
R. W.
Chantrell
, “
Atomistic spin model simulations of magnetic nanomaterials
,”
J. Phys.: Condens. Matter
26
,
103202
(
2014
).
You do not currently have access to this content.