Dental caries is a bacterial infectious disease that destroys the structure of teeth. It is one of the main diseases that endanger human health [R. H. Selwitz, A. I. Ismail, and N. B. Pitts, Lancet 369(9555), 51–59 (2007)]. At present, dentists use both visual exams and radiographs for the detection of caries. Affected by the patient's dental health and the degree of caries demineralization, it is sometimes difficult to accurately identify some dental caries in x-ray images with the naked eye. Therefore, dentists need an intelligent and accurate dental caries recognition system to assist diagnosis, reduce the influence of doctors' subjective factors, and improve the efficiency of dental caries diagnosis. Therefore, this paper combines the U-Net model verified in the field of biomedical image segmentation with the convolution block attention module, designs an Attention U-Net model for caries image segmentation, and discusses the feasibility of deep learning technology in caries image recognition so as to prepare for the next clinical verification. After testing, the Dice similarity coefficient, mean pixel accuracy, mean intersection over union, and frequency-weighted intersection over the union of teeth segmentation with Attention U-Net are 95.30%, 94.46%, 93.10%, and 93.54%, respectively. The Dice similarity coefficient, mean pixel accuracy, mean intersection over union, and frequency-weighted intersection over the union of dental caries segmentation with Attention U-Net are 85.36%, 91.84%, 82.22%, and 97.08%, respectively. As a proof of concept study, this study was an initial evaluation of technology to assist dentists in the detection of caries. There is still more work needed before this can be used clinically.

1.
R. H.
Selwitz
,
A. I.
Ismail
, and
N. B.
Pitts
,
Lancet
369
(
9555
),
51
59
(
2007
).
2.
N. B.
Pitts
,
D. T.
Zero
,
P. D.
Marsh
,
K.
Ekstrand
,
J. A.
Weintraub
, and
I.
Ramos-Gomez
,
Nat. Rev. Dis. Primers
3
(
1
),
1
16
(
2017
).
3.
A.
Rugg-Gunn
,
Acta Med. Acad.
42
(
2
),
117
130
(
2013
).
4.
N.
Hiraishi
,
M.
Sayed
,
M.
Takahashi
,
T.
Nikaido
, and
J.
Tagami
,
Jpn. Dent. Sci. Rev.
58
,
1
8
(
2022
).
5.
P. Y. F.
Wen
,
M. X.
Chen
,
Y. J.
Zhong
,
Q. Q.
Dong
, and
H. M.
Wong
,
J. Dent. Res.
101(4),
392
(
2022
).
6.
H.
Shukla
,
A.
Sajjanar
,
M.
Wasnik
,
N.
Gahlod
,
N.
Rojekar
, and
D.
Bhattad
,
Ann. Romanian Soc. Cell Biol.
25
(
4
),
6097
6107
(
2021
).
7.
O. M.
Yassin
,
ASDC J. Dent. Children
62
(
2
),
111
117
(
1995
).
8.
O. M.
Felemban
,
C. Y.
Loo
, and
A.
Ramesh
,
J. Contemp. Dent. Pract.
21
(
12
),
1361
1367
(
2020
).
9.
S.
Albawi
,
T. A.
Mohammed
, and
S.
Al-Zawi
, in
2017 International Conference on Engineering and Technology
(IEEE, 2017), pp. 1–6.
10.
F.
Schwendicke
,
K.
Elhennawy
,
S.
Paris
,
P.
Friebertshauser
, and
J.
Krois
,
J. Dent.
92
,
103260
(
2020
).
11.
Y.
Bayraktar
and
E.
Ayan
,
Clin. Oral Invest.
26
(
1
),
623
632
(
2022
).
12.
H.
Askar
,
J.
Krois
,
C.
Rohrer
,
S.
Mertens
,
K.
Elhennawy
,
L.
Ottolenghi
,
M.
Mazur
,
S.
Paris
, and
F.
Schwendicke
,
J. Dent.
107
,
103615
(
2021
).
13.
X.
Zhang
,
Y.
Liang
,
W.
Li
,
C.
Liu
,
D.
Guo
,
W.
Sun
, and
L.
Miao
,
Oral Dis.
28
(
1
),
173
181
(
2022
).
14.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.
Li
,
K.
Li
, and
F.
Li
, in
IEEE Conference on Computer Vision and Pattern Recognition
(IEEE,
2009
), pp.
248
255
.
15.
Q.
Abbas
,
Int. J. Adv. Comput Sci. Appl.
8
(6),
41
(
2017
).
16.
R.
Sarki
,
K.
Ahmed
,
H.
Wang
, et al,
IEEE Access
8
,
151133
(
2020
).
17.
G.
Altan
,
Y.
Kutlu
, and
N.
Allahverdi
,
IEEE J. Biomed. Health Inform.
24
(
5
),
1344
(
2020
).
18.
S.
Spasov
,
L.
Passsamonti
,
A.
Duggento
, et al,
NeuroImage
189
,
276
(
2019
).
19.
B.
Zhu
,
Q.
Luo
,
Y.
Zhou
, et al, “Optimal reactive power dispatch problem using an improved equilibrium optimizer,” available at SSRN 4063765.
20.
L. M.
Leo
and
T. K.
Reddy
,
Microprocess. Microsyst.
82
,
103836
(
2021
).
21.
R.
Mehta
and
J.
Sivaswamy
, in
IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
(IEEE,
2017
), pp.
437
440
.
22.
N.-T.
Do
,
S.-T.
Jung
,
H.-J.
Yang
, and
S.-H.
Kim
,
Diagnostics
11
(
4
),
691
(
2021
).
23.
J.
Liu
,
J.
Wang
,
W.
Ruan
,
C.
Lin
, and
D.
Chen
,
J. Med. Syst.
44
(
1
),
1
7
(
2020
).
24.
J.
Hu
,
L.
Shen
, and
G.
Sun
, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(IEEE,
2018
), pp.
7132
7141
.
25.
S.
Woo
,
J.
Park
,
J. Y.
Lee
, and
I. S.
Kweon
, in
Proceedings of the European Conference on Computer Vision (ECCV)
(ECCV,
2018
), pp.
3
19
.
26.
Y.
Nishitani
,
R.
Nakayama
,
D.
Hayashi
,
A.
Hizukuri
, and
K.
Murata
,
Radiol. Phys. Technol.
14
(
1
),
64
69
(
2021
).
27.
I. S.
Bayrakdar
,
K.
Orhan
,
Ö
Çelik
,
E.
Bilgir
,
H.
Saglam
,
F. A.
Kaplan
,
S. A.
Gorur
,
A.
Odabas
,
A. F.
Aslan
, and
I.
Rozylo-Kalinowska
,
BioMed Res. Int.
2022,
7035367
(
2022
).
28.
J.
Zhou
,
Q.
Zhang
,
B.
Zhang
, and
X.
Chen
,
Appl. Sci.
9
(
15
),
3128
(
2019
).
29.
H.
Zhao
,
J.
Shi
,
X.
Qi
,
X.
Wang
, and
J.
Jia
, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(IEEE,
2017
), pp.
2881
2890
.
30.
L. C.
Chen
,
G.
Papandreou
,
F.
Schroff
, and
H.
Adam
, arXiv:1706.05587 (
2017
).
31.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, arXiv:1505.04597 (
2015
).
You do not currently have access to this content.