Doughnut-shaped laser beams have applications in laser-based additive manufacturing, laser heating of diamond anvil cells, and optical super-resolution microscopy. In applications like additive manufacturing and heating of diamond anvil cells, a doughnut-shaped beam is frequently used to obtain a more uniform temperature profile relative to that generated by a conventional Gaussian beam. Conversely, in super-resolution microscopy, the doughnut-shaped beam serves to enhance spatial resolution and heating is an undesirable side effect that can cause thermal damage. Here, we develop analytical expressions for the temperature rise induced by a doughnut-shaped laser beam both alone and in combination with a Gaussian beam. For representative, experimentally determined beam radii and a wide range of thermal properties, we find that a doughnut-shaped beam results in a peak temperature rise no more than 90% and often less than 75% of that for a Gaussian beam with the same total power. Meanwhile, the region of the sample surface that reaches 80% of the maximum temperature rise is at least 1.5 times larger for a doughnut-shaped beam than for a Gaussian beam. When doughnut-shaped and Gaussian beams are applied simultaneously, the ratio of the maximum temperature rise for the two beams combined vs a Gaussian beam alone can be up to 2.5 times lower than the ratio of the doughnut-shaped vs the Gaussian beam power. For applications like super-resolution microscopy that require high doughnut-shaped laser beam powers, the doughnut-shaped beam intensity profile is thus advantageous for minimizing the total peak temperature rise when applied together with a Gaussian beam.

1.
D.
de Melo-Diogo
,
C.
Pais-Silva
,
D. R.
Dias
,
A. F.
Moreira
, and
I. J.
Correia
,
Adv. Healthcare Mater.
6
,
1700073
(
2017
).
2.
S.
Adhikari
,
P.
Spaeth
,
A.
Kar
,
M. D.
Baaske
,
S.
Khatua
, and
M.
Orrit
,
ACS Nano
14
,
16414
(
2020
).
3.
Z.
Yan
,
W.
Liu
,
Z.
Tang
,
X.
Liu
,
N.
Zhang
,
M.
Li
, and
H.
Zhang
,
Opt. Laser Technol.
106
,
427
(
2018
).
4.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
,
Appl. Phys. Rev.
1
,
011305
(
2014
).
5.
E. J. G.
Peterman
,
F.
Gittes
, and
C. F.
Schmidt
,
Biophys. J.
84
,
1308
(
2003
).
6.
S. V.
Boriskina
,
T. A.
Cooper
,
L.
Zeng
,
G.
Ni
,
J. K.
Tong
,
Y.
Tsurimaki
,
Y.
Huang
,
L.
Meroueh
,
G.
Mahan
, and
G.
Chen
,
Adv. Opt. Photonics
9
,
775
(
2017
).
7.
W. R.
Panero
and
R.
Jeanloz
,
J. Geophys. Res. Solid Earth
106
,
6493
, https://doi.org/10.1029/2000JB900423 (
2001
).
8.
W. R.
Panero
and
R.
Jeanloz
,
Rev. Sci. Instrum.
72
,
1306
(
2001
).
9.
J. F.
Lin
,
M.
Santoro
,
V. V.
Struzhkin
,
H. K.
Mao
, and
R. J.
Hemley
,
Rev. Sci. Instrum.
75
,
3302
(
2004
).
10.
J. F.
Lin
,
W.
Sturhahn
,
J.
Zhao
,
G.
Shen
,
H. K.
Mao
, and
R. J.
Hemley
,
Geophys. Res. Lett.
31
,
L14611
, https://doi.org/10.1029/2004GL020599 (
2004
).
11.
V. B.
Prakapenka
,
A.
Kubo
,
A.
Kuznetsov
,
A.
Laskin
,
O.
Shkurikhin
,
P.
Dera
,
M. L.
Rivers
, and
S. R.
Sutton
,
High Press. Res.
28
,
225
(
2008
).
12.
G.
Shen
,
M. L.
Rivers
,
Y.
Wang
, and
S. R.
Sutton
,
Rev. Sci. Instrum.
72
,
1273
(
2001
).
13.
M.
Cloots
,
P. J.
Uggowitzer
, and
K.
Wegener
,
Mater. Des.
89
,
770
(
2016
).
14.
T. M.
Wischeropp
,
H.
Tarhini
, and
C.
Emmelmann
,
J. Laser Appl.
32
,
022059
(
2020
).
15.
A.
Metel
,
M.
Stebulyanin
,
S.
Fedorov
, and
A.
Okunkova
,
Technologies
7
,
5
(
2019
).
16.
G.
Vicidomini
,
P.
Bianchini
, and
A.
Diaspro
,
Nat. Methods
15
,
173
(
2018
).
17.
T. J. A.
Wolf
,
J.
Fischer
,
M.
Wegener
, and
A.-N.
Unterreiner
,
Opt. Lett.
36
,
3188
(
2011
).
18.
J.
Fischer
and
M.
Wegener
,
Laser Photonics Rev.
7
,
22
(
2013
).
19.
C.
Eggeling
,
K. I.
Willig
, and
F. J.
Barrantes
,
J. Neurochem.
126
,
203
(
2013
).
20.
J. H.
Yoo
,
J.
Bin In
,
C.
Zheng
,
I.
Sakellari
,
R. N.
Raman
,
M. J.
Matthews
,
S.
Elhadj
, and
C. P.
Grigoropoulos
,
Nanotechnology
26
,
165303
(
2015
).
21.
B.
Kiefer
and
T. S.
Duffy
,
J. Appl. Phys.
97
,
114902
(
2005
).
22.
Y. D.
Kim
,
H.
Kim
,
Y.
Cho
,
J. H.
Ryoo
,
C.-H.
Park
,
P.
Kim
,
Y. S.
Kim
,
S.
Lee
,
Y.
Li
,
S.-N.
Park
,
Y.
Shim Yoo
,
D.
Yoon
,
V. E.
Dorgan
,
E.
Pop
,
T. F.
Heinz
,
J.
Hone
,
S.-H.
Chun
,
H.
Cheong
,
S. W.
Lee
,
M.-H.
Bae
, and
Y. D.
Park
,
Nat. Nanotechnol.
10
,
676
(
2015
).
23.
W. R.
Panero
and
R.
Jeanloz
,
J. Appl. Phys.
91
,
2769
(
2002
).
24.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
25.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
,
Rev. Sci. Instrum.
80
,
094901
(
2009
).
26.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
27.
J. L.
Braun
,
C. J.
Szwejkowski
,
A.
Giri
, and
P. E.
Hopkins
,
J. Heat Transfer
140
,
052801
(
2018
).
28.
A. D.
Pickel
and
C.
Dames
,
J. Appl. Phys.
128
,
045103
(
2020
).
29.
A.
Schmidt
,
M.
Chiesa
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
064902
(
2008
).
30.
J.
Yang
,
E.
Ziade
, and
A. J.
Schmidt
,
J. Appl. Phys.
119
,
095107
(
2016
).
31.
L.
Wang
,
R.
Cheaito
,
J. L.
Braun
,
A.
Giri
, and
P. E.
Hopkins
,
Rev. Sci. Instrum.
87
,
094902
(
2016
).
32.
R.
Piessens
, in
Transforms and Applications Handbook
, 2nd ed. (CRC Press, LLC,
2000
).
33.
R.
Endo
,
M.
Shima
, and
M.
Susa
,
Int. J. Thermophys.
31
,
1991
(
2010
).
34.
Y. S.
Touloukian
,
R. W.
Powell
,
C. Y.
Ho
, and
P. G.
Klemens
,
Thermophysical Properties of Matter
, TPRC Data Series (IFI/Plenum,
1970
), Vol. 1.
35.
H.
Lin
,
S.
Xu
,
C.
Li
,
H.
Dong
, and
X.
Wang
,
Nanoscale
5
,
4652
(
2013
).
36.
G.
Langer
,
J.
Hartmann
, and
M.
Reichling
,
Rev. Sci. Instrum.
68
,
1510
(
1997
).
37.
G.
Chen
and
P.
Hui
,
Appl. Phys. Lett.
74
,
2942
(
1999
).

Supplementary Material

You do not currently have access to this content.