Boron carbide (B4C) has been well studied both theoretically and experimentally in its bulk form due to its exceptional hardness and use as a high-temperature thermoelectric. However, the properties of its two-dimensional nanosheets are not well established. In this paper, using van der Waals-corrected density-functional theory simulations, we show that bulk B4C can be cleaved along different directions to form B4C nanosheets with low formation energies. We find that there is minimal dependence of formation energies on cleavage planes and surface terminations, even though the bulk is not van der Waals layered. This anomalous stability of B4C nanosheets is found to be a result of surface reconstructions that are unique to B-rich systems. While the density of states of the bulk B4C indicate that it is a semiconductor, the B4C nanosheets are found to be predominantly metallic. We attribute this metallic behavior to a redistribution of charges on the surface bonds of the films. The Seebeck coefficients of the B4C films remain comparable to those of the bulk and are nearly constant as a function of temperature. Our results provide guidance for experimental synthesis efforts and future application of B4C nanosheets in nanoelectronic and thermoelectric applications.

1.
M.
DeVries
,
G.
Subhash
, and
A.
Awasthi
, “
Shocked ceramics melt: An atomistic analysis of thermodynamic behavior of boron carbide
,”
Phys. Rev. B
101
,
144107
(
2020
).
2.
C.
Linderälv
,
W.
Wieczorek
, and
P.
Erhart
, “
Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride
,”
Phys. Rev. B
103
,
115421
(
2021
).
3.
W.
Zhu
,
Z.
Wu
,
G. S.
Foo
,
X.
Gao
,
M.
Zhou
,
B.
Liu
,
G. M.
Veith
,
P.
Wu
,
K. L.
Browning
,
H. N.
Lee
, and
H.
Li
, “
Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis
,”
Nat. Commun.
8
,
1
7
(
2017
).
4.
R.
Cragg
, “
Borane chemistry
,”
Nature
219
,
985
(
1968
).
5.
W.
Grubb
and
D.
McKee
, “
Boron carbide, a new substrate for fuel cell electrocatalysts
,”
Nature
210
,
192
194
(
1966
).
6.
W.
Qiu
,
X.-Y.
Xie
,
J.
Qiu
,
W.-H.
Fang
,
R.
Liang
,
X.
Ren
,
X.
Ji
,
G.
Cui
,
A. M.
Asiri
,
G.
Cui
, and
B.
Tang
, “
High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
,”
Nat. Commun.
9
,
1
8
(
2018
).
7.
V.
Mukhanov
,
O.
Kurakevych
, and
V.
Solozhenko
, “
Thermodynamic model of hardness: Particular case of boron-rich solids
,”
J. Superhard Mater.
32
,
167
176
(
2010
).
8.
T.
Aselage
,
D.
Emin
,
S.
McCready
, and
R.
Duncan
, “
Large enhancement of boron carbides’ seebeck coefficients through vibrational softening
,”
Phys. Rev. Lett.
81
,
2316
(
1998
).
9.
I.
Gunjishima
,
T.
Akashi
, and
T.
Goto
, “
Thermoelectric properties of single crystalline B4C prepared by a floating zone method
,”
Mater. Trans.
42
,
1445
1450
(
2001
).
10.
S.
Sasaki
,
M.
Takeda
,
K.
Yokoyama
,
T.
Miura
,
T.
Suzuki
,
H.
Suematsu
,
W.
Jiang
, and
K.
Yatsui
, “
Thermoelectric properties of boron-carbide thin film and thin film based thermoelectric device fabricated by intense-pulsed ion beam evaporation
,”
Sci. Technol. Adv. Mater.
6
,
181
(
2005
).
11.
S.
Lee
,
D.
Bylander
, and
L.
Kleinman
, “
Elastic moduli of B12 and its compounds
,”
Phys. Rev. B
45
,
3245
(
1992
).
12.
G. V.
Samsonov
,
Handbook of the Physicochemical Properties of the Elements
(
Springer Science & Business Media
,
2012
).
13.
D.
Bylander
,
L.
Kleinman
, and
S.
Lee
, “
Self-consistent calculations of the energy bands and bonding properties of B12C3
,”
Phys. Rev. B
42
,
1394
(
1990
).
14.
D.
Jovanović
,
J. B.
Zagorac
,
B.
Matović
,
A. R.
Zarubica
, and
D.
Zagorac
, “
Structural, electronic and mechanical properties of superhard B4C from first principles
,”
J. Innov. Mater. Extreme Cond.
1
,
19
27
(
2020
).
15.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
16.
H.
Wang
and
Q.
An
, “
Band-gap engineering in high-temperature boron-rich icosahedral compounds
,”
J. Phys. Chem. C
123
,
12505
12513
(
2019
).
17.
D.
Emin
, “
Structure and single-phase regime of boron carbides
,”
Phys. Rev. B
38
,
6041
(
1988
).
18.
R.
Lazzari
,
N.
Vast
,
J.
Besson
,
S.
Baroni
, and
A.
Dal Corso
, “
Atomic structure and vibrational properties of icosahedral B4C boron carbide
,”
Phys. Rev. Lett.
83
,
3230
(
1999
).
19.
F.-F.
Xu
and
Y.
Bando
, “
Formation of two-dimensional nanomaterials of boron carbides
,”
J. Phys. Chem. B
108
,
7651
7655
(
2004
).
20.
C.
Höglund
,
J.
Birch
,
K.
Andersen
,
T.
Bigault
,
J.-C.
Buffet
,
J.
Correa
,
P.
van Esch
,
B.
Guerard
,
R.
Hall-Wilton
,
J.
Jensen
, and
A.
Khaplanov
, “
B4C thin films for neutron detection
,”
J. Appl. Phys.
111
,
104908
(
2012
).
21.
Y.
Guo
,
A.
Gupta
,
M. S.
Gilliam
,
A.
Debnath
,
A.
Yousaf
,
S.
Saha
,
M. D.
Levin
,
A. A.
Green
,
A. K.
Singh
, and
Q. H.
Wang
, “
Exfoliation of boron carbide into ultrathin nanosheets
,”
Nanoscale
13
,
1652
1662
(
2021
).
22.
A. K.
Singh
,
K.
Mathew
,
H. L.
Zhuang
, and
R. G.
Hennig
, “
Computational screening of 2D materials for photocatalysis
,”
J. Phys. Chem. Lett.
6
,
1087
1098
(
2015
).
23.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
24.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
26.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Van der Waals density functionals applied to solids
,”
Phys. Rev. B
83
,
195131
(
2011
).
27.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
360
(
2006
).
28.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
, “
Improved grid-based algorithm for Bader charge allocation
,”
J. Comput. Chem.
28
,
899
908
(
2007
).
29.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter.
21
,
084204
(
2009
).
30.
M.
Yu
and
D. R.
Trinkle
, “
Accurate and efficient algorithm for Bader charge integration
,”
J. Chem. Phys.
134
,
064111
(
2011
).
31.
M.
Shishkin
and
G.
Kresse
, “
Implementation and performance of the frequency-dependent GW method within the PAW framework
,”
Phys. Rev. B
74
,
035101
(
2006
).
32.
M.
Shishkin
and
G.
Kresse
, “
Self-consistent GW calculations for semiconductors and insulators
,”
Phys. Rev. B
75
,
235102
(
2007
).
33.
A. A.
Mostofi
,
J. R.
Yates
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
, “
Wannier90: A tool for obtaining maximally-localised Wannier functions
,”
Comput. Phys. Commun.
178
,
685
699
(
2008
).
34.
K.
Momma
and
F.
Izumi
, “
Vesta: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
,
653
658
(
2008
).
35.
L.
Zhou
,
J.
Gao
,
Y.
Liu
,
J.
Liang
,
M.
Javid
,
A.
Shah
,
X.
Dong
,
H.
Yu
, and
X.
Quan
, “
Template synthesis of novel monolayer B4C ultrathin film
,”
Ceram. Int.
45
,
2909
2916
(
2019
).
36.
S.
Lee
,
J.
Mazurowski
,
G.
Ramseyer
, and
P. A.
Dowben
, “
Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes
,”
J. Appl. Phys.
72
,
4925
4933
(
1992
).
37.
H.
Werheit
, “
On excitons and other gap states in boron carbide
,”
J. Phys.: Condens. Matter
18
,
10655
(
2006
).
38.
S.
Okamoto
and
A. J.
Millis
, “
Electronic reconstruction at an interface between a mott insulator and a band insulator
,”
Nature
428
,
630
633
(
2004
).
39.
C. B.
Duke
, “
Semiconductor surface reconstruction: The structural chemistry of two-dimensional surface compounds
,”
Chem. Rev.
96
,
1237
1260
(
1996
).
40.
G. K.
Madsen
,
J.
Carrete
, and
M. J.
Verstraete
, “
BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients
,”
Comput. Phys. Commun.
231
,
140
145
(
2018
).
41.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(Cengage Learning, 2022).

Supplementary Material

You do not currently have access to this content.