The optimization of graphene field-effect transistors (GFETs) for high-frequency applications requires further understanding of the physical mechanisms concerning charge carrier transport at short channel lengths. Here, we study the charge carrier transport in GFETs with gate lengths ranging from 2 μm down to 0.2 μm by applying a quasi-ballistic transport model. It is found that the carrier mobility, evaluated via the drain–source resistance model, including the geometrical magnetoresistance effect, is more than halved with decreasing the gate length in the studied range. This decrease in mobility is explained by the impact of ballistic charge carrier transport. The analysis allows for evaluation of the characteristic length, a parameter of the order of the mean-free path, which is found to be in the range of 359–374 nm. The mobility term associated with scattering mechanisms is found to be up to 4456 cm2/Vs. Transmission formalism treating the electrons as purely classical particles allows for the estimation of the probability of charge carrier transport without scattering events. It is shown that at the gate length of 2 μm, approximately 20% of the charge carriers are moving without scattering, while at the gate length of 0.2 μm, this number increases to above 60%.

1.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
2.
A.
Castro Neto
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
3.
Y.
Lin
, “
100-GHz transistors from wafer-scale epitaxial graphene
,”
Science
327
,
662
(
2010
).
4.
F.
Schwierz
, “
Graphene transistors
,”
Nat. Nanotechnol.
5
,
487
496
(
2010
).
5.
M. A.
Yamoah
,
W.
Yang
,
E.
Pop
, and
D.
Goldhaber-Gordon
, “
High velocity saturation in graphene encapsulated by hexagonal boron nitride
,”
ACS Nano
11
,
9914
9919
(
2017
).
6.
M.
Bonmann
,
A.
Vorobiev
,
M. A.
Andersson
, and
J.
Stake
, “
Charge carrier velocity in graphene field-effect transistors
,”
Appl. Phys. Lett.
111
,
233505
(
2017
).
7.
A.
Vorobiev
,
M.
Bonmann
,
M.
Asad
,
X.
Yang
,
J.
Stake
,
L.
Banszerus
,
C.
Stampfer
,
M.
Otto
, and
D.
Neumaier
, “Graphene field-effect transistors for millimeter wave amplifiers,” in
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves
(IRMMW-THz) (IEEE, Piscataway, NJ, 2019), pp. 1–2.
8.
I.
Meric
,
M.
Han
,
A.
Young
,
B.
Ozyilmaz
,
P.
Kim
, and
K. L.
Shepard
, “
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
,”
Nat. Nanotechnol.
3
,
654
659
(
2008
).
9.
V. E.
Dorgan
,
M.-H.
Bae
, and
E.
Pop
, “
Mobility and saturation velocity in graphene on SiO2
,”
Appl. Phys. Lett.
97
,
082112
(
2010
).
10.
M.
Asad
,
K. O.
Jeppson
,
A.
Vorobiev
,
M.
Bonmann
, and
J.
Stake
, “
Enhanced high-frequency performance of top-gated graphene FETs due to substrate-induced improvements in charge carrier saturation velocity
,”
IEEE Trans. Electron Devices
68
,
899
902
(
2021
).
11.
M.
Asad
,
S.
Majdi
,
A.
Vorobiev
,
K.
Jeppson
,
J.
Isberg
, and
J.
Stake
, “
Graphene FET on diamond for high-frequency electronics
,”
IEEE Electron Device Lett.
43
,
300
303
(
2022
).
12.
Y.
Wu
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
D. B.
Farmer
,
Y.
Zhu
,
A. A.
Bol
,
C.
Dimitrakopoulos
,
W.
Zhu
,
F.
Xia
,
P.
Avouris
, and
Y.-M.
Lin
, “
State-of-the-art graphene high-frequency electronics
,”
Nano Lett.
12
,
3062
3067
(
2012
).
13.
M.
Shur
, “Ballistic transport and terahertz electronics,” in 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010), pp. 1–7.
14.
S.
Rakheja
,
Y.
Wu
,
H.
Wang
,
T.
Palacios
,
P.
Avouris
, and
D. A.
Antoniadis
, “
An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors
,”
IEEE Trans. Nanotechnol.
13
,
1005
1013
(
2014
).
15.
M.
Shur
, “
Low ballistic mobility in submicron HEMTs
,”
IEEE Electron Device Lett.
23
,
511
513
(
2002
).
16.
I.
Meric
, “
Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements
,”
Nano Lett.
11
,
1093
1097
(
2011
).
17.
Z.
Chen
and
J.
Appenzeller
, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in 2008 IEEE International Electron Devices Meeting (IEEE, 2008), pp. 1–4.
18.
A. K.
Upadhyay
,
A. K.
Kushwaha
,
P.
Rastogi
,
Y. S.
Chauhan
, and
S. K.
Vishvakarma
, “
Explicit model of channel charge, backscattering, and mobility for graphene FET in quasi-ballistic regime
,”
IEEE Trans. Electron Devices
65
,
5468
5474
(
2018
).
19.
J.
Lusakowski
,
W.
Knap
,
Y.
Meziani
,
J.-P.
Cesso
,
A.
El Fatimy
,
R.
Tauk
,
N.
Dyakonova
,
G.
Ghibaudo
,
F.
Boeuf
, and
T.
Skotnicki
, “
Electron mobility in quasi-ballistic Si MOSFETs
,”
Solid-State Electron.
50
,
632
636
(
2006
).
20.
S.
Datta
, “Electronic transport in mesoscopic systems,” in Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Cambridge University Press, 1995).
21.
I.
Harrysson Rodrigues
,
A.
Generalov
,
M.
Soikkeli
,
A.
Murros
,
S.
Arpiainen
, and
A.
Vorobiev
, “
Geometrical magnetoresistance effect and mobility in graphene field-effect transistors
,”
Appl. Phys. Lett.
121
,
013502
(
2022
).
22.
S.
ang Peng
,
Z.
Jin
,
P.
Ma
,
D.
yong Zhang
,
J.
yuan Shi
,
J.
bin Niu
,
X.
yun Wang
,
S.
qing Wang
,
M.
Li
,
X.
yu Liu
,
T.
chun Ye
,
Y.
hui Zhang
,
Z.
ying Chen
, and
G.
hui Yu
, “
The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity
,”
Carbon
82
,
500
505
(
2015
).
23.
M.
Bonmann
,
M.
Asad
,
X.
Yang
,
A.
Generalov
,
A.
Vorobiev
,
L.
Banszerus
,
C.
Stampfer
,
M.
Otto
,
D.
Neumaier
, and
J.
Stake
, “
Graphene field-effect transistors with high extrinsic fT and fmax
,”
IEEE Electron Device Lett.
40
,
131
134
(
2019
).
24.
M.
Asad
,
M.
Bonmann
,
X.
Yang
,
A.
Vorobiev
,
K.
Jeppson
,
L.
Banszerus
,
M.
Otto
,
C.
Stampfer
,
D.
Neumaier
, and
J.
Stake
, “
The dependence of the high-frequency performance of graphene field-effect transistors on channel transport properties
,”
IEEE J. Electron Devices Soc.
8
,
457
464
(
2020
).
25.
I.
Harrysson Rodrigues
, “Charge carrier transport in field-effect transistors with two-dimensional electron gas channels studied using geometrical magnetoresistance effect,” Ph.D. thesis, Series No. 5194 (Chalmers University of Technology, 2022).
26.
“Graphenea”; see https://www.graphenea.com (2010).
27.
M.
Asad
, “Impact of adjacent dielectrics on the high-frequency performance of graphene field-effect transistors,” Ph.D. thesis, Series No. 8754 (Chalmers University of Technology, 2021).
28.
F.
Xia
,
V.
Perebeinos
,
Y.
Lin
,
Y.
Wu
, and
P.
Avouris
, “
The origins and limits of metal-graphene junction resistance
,”
Nat. Nanotechnol.
6
,
179
184
(
2011
).
29.
L.
Wang
,
I.
Meric
,
P.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L.
Campos
,
D.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K.
Shepard
, and
C.
Dean
, “
One-dimensional electrical contact to a two-dimensional material
,”
Science
342
,
614
617
(
2013
).
30.
X.
Yang
,
M.
Bonmann
,
A.
Vorobiev
, and
J.
Stake
, “Characterization of Al2O3 gate dielectric for graphene electronics on flexible substrates,” in
2016 Global Symposium on Millimeter Waves (GSMM) and ESA Workshop on Millimetre-Wave Technology and Applications
(IEEE, Piscataway, NJ, 2016), pp. 1–4.
31.
M.
Groner
,
J.
Elam
,
F.
Fabreguette
, and
S.
George
, “
Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates
,”
Thin Solid Films
413
,
186
197
(
2002
).
32.
S.
Kim
,
J.
Nah
,
I.
Jo
,
D.
Shahrjerdi
,
L.
Colombo
,
Z.
Yao
,
E.
Tutuc
, and
S. K.
Banerjee
, “
Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric
,”
Appl. Phys. Lett.
94
,
062107
(
2009
).
33.
M.
Bonmann
,
A.
Vorobiev
,
J.
Stake
, and
O.
Engström
, “
Effect of oxide traps on channel transport characteristics in graphene field effect transistors
,”
J. Vac. Sci. Technol. B
35
,
01A115
(
2017
).
34.
J.
Wang
and
M.
Lundstrom
, “
Ballistic transport in high electron mobility transistors
,”
IEEE Trans. Electron Devices
50
,
1604
1609
(
2003
).
35.
C. K.
Ullal
,
J.
Shi
, and
R.
Sundararaman
, “
Electron mobility in graphene without invoking the Dirac equation
,”
Am. J. Phys.
87
,
291
295
(
2019
).
36.
M.
Lundstrom
, “
On the mobility versus drain current relation for a nanoscale MOSFET
,”
IEEE Electron Device Lett.
22
,
293
295
(
2001
).
37.
A.
Hamed
,
M.
Asad
,
M.-D.
Wei
,
A.
Vorobiev
,
J.
Stake
, and
R.
Negra
, “
Integrated 10-GHz graphene FET amplifier
,”
IEEE J. Microw.
1
,
821
826
(
2021
).
38.
S.
Adam
,
E. H.
Hwang
,
V. M.
Galitski
, and
S.
Das Sarma
, “
A self-consistent theory for graphene transport
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18392
18397
(
2007
).
39.
S.
Bidmeshkipour
,
A.
Vorobiev
,
M. A.
Andersson
,
A.
Kompany
, and
J.
Stake
, “
Effect of ferroelectric substrate on carrier mobility in graphene field-effect transistors
,”
Appl. Phys. Lett.
107
,
173106
(
2015
).
40.
Y.
Zhang
,
V.
Brar
,
C.
Girit
,
A.
Zettl
, and
M. F.
Crommie
, “
Origin of spatial charge inhomogeneity in graphene
,”
Nat. Phys.
5
,
722
726
(
2009
).
41.
T.
Wehling
,
M.
Katsnelson
, and
A.
Lichtenstein
, “
Adsorbates on graphene: Impurity states and electron scattering
,”
Chem. Phys. Lett.
476
,
125
134
(
2009
).
42.
M. J.
Hollander
,
M.
LaBella
,
Z. R.
Hughes
,
M.
Zhu
,
K. A.
Trumbull
,
R.
Cavalero
,
D. W.
Snyder
,
X.
Wang
,
E.
Hwang
,
S.
Datta
, and
J. A.
Robinson
, “
Enhanced transport and transistor performance with oxide seeded high-k gate dielectrics on wafer-scale epitaxial graphene
,”
Nano Lett.
11
,
3601
3607
(
2011
).
43.
J.
Buron
,
F.
Pizzocchero
,
P.
Jepsen
,
D. H.
Petersen
,
J. M.
Caridad
,
B. S.
Jessen
,
T. J.
Booth
, and
P.
Bøggild
, “
Graphene mobility mapping
,”
Sci. Rep.
5
,
12305
(
2015
).
44.
S.
Adam
,
E.
Hwang
, and
S.
Das Sarma
, “
Scattering mechanisms and Boltzmann transport in graphene
,”
Phys. E: Low-Dimens. Syst. Nanostruct.
40
,
1022
1025
(
2008
).
45.
J.
Chen
,
C.
Jang
,
S.
Adam
,
M. S.
Fuhrer
,
E. D.
Williams
, and
M.
Ishigami
, “
Charged-impurity scattering in graphene
,”
Nat. Phys.
4
,
377
381
(
2008
).
46.
J.
Chan
,
A.
Venugopal
,
A.
Pirkle
,
S.
McDonnell
,
D.
Hinojos
,
C. W.
Magnuson
,
R. S.
Ruoff
,
L.
Colombo
,
R. M.
Wallace
, and
E. M.
Vogel
, “
Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition
,”
ACS Nano
6
,
3224
3229
(
2012
).
You do not currently have access to this content.