Crystalline Cu2Te has recently attracted a great deal of attention owing to its good performance in thermoelectric materials. Yet, knowledge of the amorphous phase is still insufficient, which may restrict its practical application. Here, we have studied the structural and bonding characteristics of amorphous Cu2Te by ab initio molecular dynamics simulations. We show that, compared with its crystal phase, the Cu atoms bond more Cu than Te atoms in amorphous Cu2Te and Te atoms predominantly bond with Cu atoms. In detail, the amorphous Cu2Te is made up of Cu–Te network structures and Cu–Cu high-coordinated configurations, presenting the hexagonal and icosahedral structures, respectively. This result is probably ascribed to both the stronger bonding ability of Cu–Cu bonds and the multivalence of Te atoms. Our findings enrich the knowledge of the local structure and the bonding nature of amorphous Cu2Te, which can guide the design of good performance Cu2Te based thermoelectric devices further.

1.
D.
Chao
,
P.
Liang
,
Z.
Chen
,
L.
Bai
,
H.
Shen
,
X.
Liu
,
X.
Xia
,
Y.
Zhao
,
S. V.
Savilov
,
J.
Lin
, and
Z. X.
Shen
,
ACS Nano
10
,
10211
10219
(
2016
).
2.
P.
Hosseini
,
C. D.
Wright
, and
H.
Bhaskaran
,
Nature
511
,
206
211
(
2014
).
3.
M. D.
Regulacio
and
M.-Y.
Han
,
Acc. Chem. Res.
49
,
511
519
(
2016
).
4.
Y.
Zhang
,
C.
Fowler
,
J.
Liang
,
B.
Azhar
,
M. Y.
Shalaginov
,
S.
Deckoff-Jones
,
S.
An
,
J. B.
Chou
,
C. M.
Roberts
,
V.
Liberman
,
M.
Kang
,
C.
Rios
,
K. A.
Richardson
,
C.
Rivero-Baleine
,
T.
Gu
,
H.
Zhang
, and
J.
Hu
,
Nat. Nanotechnol.
16
,
661
666
(
2021
).
5.
L.-D.
Zhao
,
S.
Hao
,
S.-H.
Lo
,
C.-I.
Wu
,
X.
Zhou
,
Y.
Lee
,
H.
Li
,
K.
Biswas
,
T. P.
Hogan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
135
,
7364
7370
(
2013
).
6.
R. J.
Mehta
,
Y.
Zhang
,
C.
Karthik
,
B.
Singh
,
R. W.
Siegel
,
T.
Borca-Tasciuc
, and
G.
Ramanath
,
Nat. Mater.
11
,
233
240
(
2012
).
7.
C.
Qin
,
L.
Cheng
,
Y.
Xiao
,
C.
Wen
,
B.
Ge
,
W.
Li
, and
Y.
Pei
,
Mater. Today Phys.
17
,
100355
(
2021
).
8.
H.
Mamur
,
M. R. A.
Bhuiyan
,
F.
Korkmaz
, and
M.
Nil
,
Renew. Sustain. Energy Rev.
82
,
4159
4169
(
2018
).
9.
M.
Hong
,
J.
Zou
, and
Z.-G.
Chen
,
Adv. Mater.
31
,
1807071
(
2019
).
10.
Z.
Gao
,
G.
Liu
, and
J.
Ren
,
ACS Appl. Mater. Inter.
10
,
40702
40709
(
2018
).
11.
J. W.
Villanova
and
S.
Barraza-Lopez
,
Phys. Rev. B
103
,
035421
(
2021
).
12.
D.
Wickramaratne
,
F.
Zahid
, and
R. K.
Lake
,
J. Chem. Phys.
140
,
124710
(
2014
).
13.
W.-D.
Liu
,
L.
Yang
,
Z.-G.
Chen
, and
J.
Zou
,
Adv. Mater.
32
,
1905703
(
2020
).
14.
S.
Kavirajan
,
S.
Harish
,
J.
Archana
,
M.
Shimomura
, and
M.
Navaneethan
,
Mater. Lett.
298
,
129957
(
2021
).
15.
S.
Ballikaya
,
H.
Chi
,
J. R.
Salvador
, and
C.
Uher
,
J. Mater. Chem. A
1
,
12478
12484
(
2013
).
16.
Y.
He
,
T.
Zhang
,
X.
Shi
,
S.-H.
Wei
, and
L.
Chen
,
NPG Asia Mater.
7
,
e210
(
2015
).
17.
J. H.
Yun
,
K. H.
Kim
,
D. Y.
Lee
, and
B. T.
Ahn
,
Sol. Energ. Mater. Sol. C
75
,
203
210
(
2003
).
18.
C.
Han
,
Y.
Bai
,
Q.
Sun
,
S.
Zhang
,
Z.
Li
,
L.
Wang
, and
S.
Dou
,
Adv. Sci.
3
,
1500350
(
2016
).
19.
N.
Vouroutzis
and
C.
Manolikas
,
Phys. Status Solidi A
115
,
399
412
(
1989
).
20.
N.
Vouroutzis
,
N.
Frangis
, and
C.
Manolikas
,
Phys. Status Solidi A
202
,
271
280
(
2005
).
21.
A. H.
Barajas-Aguilar
,
S. J.
Jimenez Sandoval
, and
A. M.
Garay-Tapia
,
J. Phys.: Condens. Matter
32
,
045403
(
2020
).
22.
L.
Yu
,
K.
Luo
,
S.
Chen
, and
C.-G.
Duan
,
CrystEngComm
17
,
2878
2885
(
2015
).
23.
Y.
Zhang
,
B.
Sa
,
J.
Zhou
, and
Z.
Sun
,
Comp. Mater. Sci.
81
,
163
169
(
2014
).
24.
J. L. F.
Da Silva
,
S.-H.
Wei
,
J.
Zhou
, and
X.
Wu
,
Appl. Phys. Lett.
91
,
091902
(
2007
).
25.
Y.
Tong
,
M.
Bouaziz
,
W.
Zhang
,
B.
Obeid
,
A.
Loncle
,
H.
Oughaddou
,
H.
Enriquez
,
K.
Chaouchi
,
V.
Esaulov
,
Z.
Chen
,
H.
Xiong
,
Y.
Cheng
, and
A.
Bendounan
,
2D Mater.
7
,
035010
(
2020
).
26.
K.
Qian
,
L.
Gao
,
H.
Li
,
S.
Zhang
,
J. H.
Yan
,
C.
Liu
,
J. O.
Wang
,
T.
Qian
,
H.
Ding
,
Y. Y.
Zhang
,
X.
Lin
,
S. X.
Du
, and
H. J.
Gao
,
Chin. Phys. B
29
,
018104
(
2020
).
27.
J.
Feng
,
H.
Gao
,
T.
Li
,
X.
Tan
,
P.
Xu
,
M.
Li
,
L.
He
, and
D.
Ma
,
ACS Nano
15
,
3415
3422
(
2021
).
28.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
561
(
1993
).
29.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
30.
Blochl
,
Phys. Rev. B
50
,
17953
17979
(
1994
).
31.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
32.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
1697
(
1985
).
33.
S.
Nose
,
J. Chem. Phys.
81
,
511
519
(
1984
).
34.
C.
Qiao
,
M.
Xu
,
S.
Wang
,
C.-Z.
Wang
,
K.-M.
Ho
,
X.
Miao
, and
M.
Xu
,
Scr. Mater.
202
,
114011
(
2021
).
35.
C.
Qiao
,
Y. R.
Guo
,
F.
Dong
,
J. J.
Wang
,
H.
Shen
,
S. Y.
Wang
,
M.
Xu
,
X. S.
Miao
,
Y. X.
Zheng
,
R. J.
Zhang
,
L. Y.
Chen
,
C. Z.
Wang
, and
K. M.
Ho
,
J. Mater. Chem. C
6
,
5001
5011
(
2018
).
36.
Y. R.
Guo
,
C.
Qiao
,
J. J.
Wang
,
H.
Shen
,
S. Y.
Wang
,
Y. X.
Zheng
,
R. J.
Zhang
,
L. Y.
Chen
,
W.-S.
Su
,
C. Z.
Wang
, and
K. M.
Ho
,
J. Alloys Compd.
790
,
675
682
(
2019
).
37.
C.
Qiao
,
Y. R.
Guo
,
S.
Wang
,
Y.
Jia
,
C.-Z.
Wang
, and
K.-M.
Ho
,
Phys. Chem. Chem. Phys.
22
,
9759
9766
(
2020
).
38.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
4963
(
1987
).
39.
L. C. R.
Aliaga
,
L. V. P. C.
Lima
,
G. M. B.
Domingues
,
I. N.
Bastos
, and
G. A.
Evangelakis
,
Mater. Res. Express
6
,
045202
(
2019
).
40.
J.
Galvan-Colin
,
A. A.
Valladares
,
R. M.
Valladares
, and
A.
Valladares
,
Phys. B
475
,
140
147
(
2015
).
41.
R.
Gu
,
M.
Xu
,
C.
Qiao
,
C.-Z.
Wang
,
K.-M.
Ho
,
S.
Wang
,
M.
Xu
, and
X.
Miao
,
Scr. Mater.
218
,
114834
(
2022
).
42.
R.
Nelson
,
C.
Ertural
,
J.
George
,
V. L.
Deringer
,
G.
Hautier
, and
R.
Dronskowski
,
J. Comput. Chem.
41
,
1931
1940
(
2020
).
You do not currently have access to this content.