Coupling-induced transparency (CIT) and absorption (CIA) of transmission signals were experimentally observed in a single planar hybrid structure specially designed to consist of a yttrium iron garnet film and three concentric inverted-split-ring resonators (ISRRs). The observation of both CIT and CIA was ascribed to the cooperative effect of the interaction of magnons with three decoupled ISRRs' photon modes and the traveling waves along the microstripline. An analytical model developed based on the balance between the coherent and dissipative multiple-paths interactions precisely reproduced both CIT and CIA experimentally observed from a single hybrid system. This work, promisingly, can provide guidance for the design of efficient, flexible, and well-controllable magnon–photon hybrid devices that are highly in demand for applications to quantum technologies currently under development.

1.
H. J.
Kimble
,
Nature
453
,
1023
1030
(
2008
).
2.
Z.-L.
Xiang
,
S.
Ashhab
,
J. Q.
You
, and
F.
Nori
,
Rev. Mod. Phys.
85
,
623
653
(
2013
).
3.
Y.
Li
,
W.
Zhang
,
V.
Tyberkevych
,
W.-K.
Kwok
,
A.
Hoffmann
, and
V.
Novosad
,
J. Appl. Phys.
128
,
130902
(
2020
).
4.
A. I.
Lvovsky
,
B. C.
Sanders
, and
W.
Tittel
,
Nat. Photonics
3
,
706
714
(
2009
).
5.
K. M.
Birnbaum
,
A.
Boca
,
R.
Miller
,
A. D.
Boozer
,
T. E.
Northup
, and
H. J.
Kimble
,
Nature
436
,
87
90
(
2005
).
6.
H.
Tanji-Suzuki
,
W.
Chen
,
R.
Landig
,
J.
Simon
, and
V.
Vuletic
,
Science
333
,
1266
1269
(
2011
).
7.
Z.
Xu
,
S.
Liu
,
S.
Li
, and
X.
Yin
,
Phys. Rev. B
99
,
041104(R)
(
2019
).
8.
K.
Mal
,
K.
Islam
,
S.
Mondal
,
D.
Bhattacharyya
, and
A.
Bandyopadhyay
,
Chin. Phys. B
29
,
054211
(
2020
).
9.
J.
Zhang
,
C.
Guo
,
K.
Liu
,
Z.
Zhu
,
W.
Ye
,
X.
Yuan
, and
S.
Qin
,
Opt. Express
22
,
12524
12532
(
2014
).
10.
B.
Bhoi
,
T.
Cliff
,
I. S.
Maksymov
,
M.
Kostylev
,
R.
Aiyar
,
N.
Venkataramani
,
S.
Prasad
, and
R. L.
Stamps
,
J. Appl. Phys.
116
,
243906
(
2014
).
11.
L.
Bai
,
M.
Harder
,
Y. P.
Chen
,
X.
Fan
,
J. Q.
Xiao
, and
C.-M.
Hu
,
Phys. Rev. Lett.
114
,
227201
(
2015
).
12.
B.
Bhoi
,
B.
Kim
,
J.
Kim
,
Y.-J.
Cho
, and
S.-K.
Kim
,
Sci. Rep.
7
,
11930
(
2017
).
13.
M.
Harder
,
Y.
Yang
,
B. M.
Yao
,
C. H.
Yu
,
J. W.
Rao
,
Y. S.
Gui
,
R. L.
Stamps
, and
C.-M.
Hu
,
Phys. Rev. Lett.
121
,
137203
(
2018
).
14.
B.
Bhoi
,
B.
Kim
,
S.-H.
Jang
,
J.
Kim
,
J.
Yang
,
Y.-J.
Cho
, and
S.-K.
Kim
,
Phys. Rev. B
99
,
134426
(
2019
).
15.
X.
Zhang
,
C.-L.
Zou
,
N.
Zhu
,
F.
Marquardt
,
L.
Jiang
, and
H. X.
Tang
,
Nat. Commun.
6
,
8914
(
2015
).
16.
L.
Bai
,
M.
Harder
,
P.
Hyde
,
Z.
Zhang
,
C.-M.
Hu
,
Y. P.
Chen
, and
J. Q.
Xiao
,
Phys. Rev. Lett.
118
,
217201
(
2017
).
17.
X.
Zhang
,
A.
Galda
,
X.
Han
,
D.
Jin
, and
V. M.
Vinokur
,
Phys. Rev. Appl.
13
,
044039
(
2020
).
18.
M.
Elyasi
,
Y. M.
Blanter
, and
G. E. W.
Bauer
,
Phys. Rev. B
101
,
054402
(
2020
).
19.
V. L.
Grigoryan
and
K.
Xia
,
Phys. Rev. B
100
,
014415
(
2019
).
20.
P.-C.
Xu
,
J. W.
Rao
,
Y. S.
Gui
,
X.
Jin
, and
C.-M.
Hu
,
Phys. Rev. B
100
,
094415
(
2019
).
21.
Y.
Li
,
V. G.
Yefremenko
,
M.
Lisovenko
,
C.
Trevillian
,
T.
Polakovic
,
T. W.
Cecil
,
P. S.
Barry
,
J.
Pearson
,
R.
Divan
,
V.
Tyberkevych
,
C. L.
Chang
,
U.
Welp
,
W.-K.
Kwok
, and
V.
Novosad
,
Phys. Rev. Lett.
128
,
047701
(
2022
).
22.
B.
Bhoi
,
S.-H.
Jang
,
B.
Kim
, and
S.-K.
Kim
,
J. Appl. Phys.
129
,
083904
(
2021
).
23.
T.
Jeffrey
,
W.
Zhang
, and
J.
Sklenar
,
Appl. Phys. Lett.
118
,
202401
(
2021
).
24.
B.
Yao
,
T.
Yu
,
X.
Zhang
,
W.
Lu
,
Y.
Gui
,
C.-M.
Hu
, and
Y. M.
Blanter
,
Phys. Rev. B
100
,
214426
(
2019
).
25.
J. W.
Rao
,
Y. P.
Wang
,
Y.
Yang
,
T.
Yu
,
Y. S.
Gui
,
X. L.
Fan
,
D. S.
Xue
, and
C.-M.
Hu
,
Phys. Rev. B
101
,
064404
(
2020
).
26.
M.-W.
Hu
,
W.
Yu
, and
Y.-P.
Wang
,
Ann. Phys.
534
(
4
),
2100534
(
2022
).
27.
J. W.
Rao
,
P. C.
Xu
,
Y. S.
Gui
,
Y. P.
Wang
,
Y.
Yang
,
B.
Yao
,
J.
Dietrich
,
G. E.
Bridges
,
X. L.
Fan
,
D. S.
Xue
, and
C.-M.
Hu
,
Nat. Commun.
12
,
1933
(
2021
).

Supplementary Material

You do not currently have access to this content.