The twin image-free phase reconstruction is still a challenge with single-shot inline holographic systems. Existing solutions mostly are based on the inverse problem approaches or alternating projections. However, there exists a trade-off between phase retrieval and twin image elimination. Recent studies have introduced a hybrid method involving both the approaches to mitigate this trade-off. Following these works, we propose a single-shot sparsity-assisted iterative phase retrieval approach that applies a sparsity constraint in the object domain and formulates phase retrieval as a minimization problem. We demonstrate lensless digital inline holographic microscopy for imaging transparent and weakly scattering biological samples over a large field-of-view of 29mm2. The proposed method achieves high fidelity phase reconstruction with faster convergence compared to the existing single-shot phase retrieval methods. We further demonstrate the phase quantification of label-free biological samples, such as cervical cells and RBCs, to highlight the potential of our technique in clinical applications.

1.
C. L.
Curl
,
C. J.
Bellair
,
T.
Harris
,
B. E.
Allman
,
P. J.
Harris
,
A. G.
Stewart
,
A.
Roberts
,
K. A.
Nugent
, and
L. M.
Delbridge
, “
Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy
,”
Cytometry Part A
65
,
88
92
(
2005
).
2.
A.
Ghosh
,
J.
Noble
,
A.
Sebastian
,
S.
Das
, and
Z.
Liu
, “
Digital holography for non-invasive quantitative imaging of two-dimensional materials
,”
J. Appl. Phys.
127
,
084901
(
2020
).
3.
J.
Mangal
,
R.
Monga
,
S. R.
Mathur
,
A. K.
Dinda
,
J.
Joseph
,
S.
Ahlawat
, and
K.
Khare
, “
Unsupervised organization of cervical cells using bright-field and single-shot digital holographic microscopy
,”
J. Biophotonics
12
,
e201800409
(
2019
).
4.
J. W.
Goodman
, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2005), Vol. 3.
5.
P.
Benzie
, “
Handbook of holographic interferometry: Optical and digital methods
,”
Opt. Lasers Eng.
46
,
94
95
(
2008
).
6.
P.
Pellat-Finet
, “
Fresnel diffraction and the fractional-order fourier transform
,”
Opt. Lett.
19
,
1388
1390
(
1994
).
7.
M.
Liebling
,
T.
Blu
, and
M.
Unser
, “
Fresnelets: New multiresolution wavelet bases for digital holography
,”
IEEE Trans. Image Process.
12
,
29
43
(
2003
).
8.
E.
Cuche
,
P.
Marquet
, and
C.
Depeursinge
, “
Spatial filtering for zero-order and twin-image elimination in digital off-axis holography
,”
Appl. Opt.
39
,
4070
4075
(
2000
).
9.
Y.
Kohmura
,
T.
Sakurai
,
T.
Ishikawa
, and
Y.
Suzuki
, “
Phase retrieval with two-beam off-axis x-ray holography
,”
J. Appl. Phys.
96
,
1781
1784
(
2004
).
10.
D.
Gabor
, “
A new microscopic principle
,”
Nature
161
,
777
778
(
1948
).
11.
O.
Mudanyali
,
D.
Tseng
,
C.
Oh
,
S. O.
Isikman
,
I.
Sencan
,
W.
Bishara
,
C.
Oztoprak
,
S.
Seo
,
B.
Khademhosseini
, and
A.
Ozcan
, “
Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications
,”
Lab Chip
10
,
1417
1428
(
2010
).
12.
H. P. R.
Gurram
,
A. S.
Galande
, and
R.
John
, “
Nanometric depth phase imaging using low-cost on-chip lensless inline holographic microscopy
,”
Opt. Eng.
59
,
104105
(
2020
).
13.
A.
Greenbaum
,
W.
Luo
,
T.-W.
Su
,
Z.
Göröcs
,
L.
Xue
,
S. O.
Isikman
,
A. F.
Coskun
,
O.
Mudanyali
, and
A.
Ozcan
, “
Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy
,”
Nat. Methods
9
,
889
895
(
2012
).
14.
M.
Guizar-Sicairos
and
J. R.
Fienup
, “
Understanding the twin-image problem in phase retrieval
,”
J. Opt. Soc. Am. A
29
,
2367
2375
(
2012
).
15.
R. W.
Gerchberg
, “
A practical algorithm for the determination of plane from image and diffraction pictures
,”
Optik
35
,
237
246
(
1972
).
16.
J. R.
Fienup
, “
Phase retrieval algorithms: A comparison
,”
Appl. Opt.
21
,
2758
2769
(
1982
).
17.
T.
Latychevskaia
and
H.-W.
Fink
, “
Solution to the twin image problem in holography
,”
Phys. Rev. Lett.
98
,
233901
(
2007
).
18.
S. M.
Raupach
, “
Cascaded adaptive-mask algorithm for twin-image removal and its application to digital holograms of ice crystals
,”
Appl. Opt.
48
,
287
301
(
2009
).
19.
V.
Bianco
,
M.
Paturzo
,
P.
Memmolo
,
A.
Finizio
,
P.
Ferraro
, and
B.
Javidi
, “
Random resampling masks: A non-Bayesian one-shot strategy for noise reduction in digital holography
,”
Opt. Lett.
38
,
619
621
(
2013
).
20.
A.
Greenbaum
,
Y.
Zhang
,
A.
Feizi
,
P.-L.
Chung
,
W.
Luo
,
S. R.
Kandukuri
, and
A.
Ozcan
, “
Wide-field computational imaging of pathology slides using lens-free on-chip microscopy
,”
Sci. Transl. Med.
6
,
267ra175
(
2014
).
21.
V.
Elser
, “
Phase retrieval by iterated projections
,”
J. Opt. Soc. Am. A
20
,
40
55
(
2003
).
22.
L.
Allen
and
M.
Oxley
, “
Phase retrieval from series of images obtained by defocus variation
,”
Opt. Commun.
199
,
65
75
(
2001
).
23.
A.
Greenbaum
and
A.
Ozcan
, “
Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy
,”
Opt. Express
20
,
3129
3143
(
2012
).
24.
H.
Zhang
,
T.
Stangner
,
K.
Wiklund
, and
M.
Andersson
, “
Object plane detection and phase retrieval from single-shot holograms using multi-wavelength in-line holography
,”
Appl. Opt.
57
,
9855
9862
(
2018
).
25.
P.
Bao
,
G.
Situ
,
G.
Pedrini
, and
W.
Osten
, “
Lensless phase microscopy using phase retrieval with multiple illumination wavelengths
,”
Appl. Opt.
51
,
5486
5494
(
2012
).
26.
J.
Min
,
B.
Yao
,
M.
Zhou
,
R.
Guo
,
M.
Lei
,
Y.
Yang
,
D.
Dan
,
S.
Yan
, and
T.
Peng
, “
Phase retrieval without unwrapping by single-shot dual-wavelength digital holography
,”
J. Opt.
16
,
125409
(
2014
).
27.
W.
Luo
,
A.
Greenbaum
,
Y.
Zhang
, and
A.
Ozcan
, “
Synthetic aperture-based on-chip microscopy
,”
Light Sci. Appl.
4
,
e261
(
2015
).
28.
W.
Luo
,
Y.
Zhang
,
Z.
Göröcs
,
A.
Feizi
, and
A.
Ozcan
, “
Propagation phasor approach for holographic image reconstruction
,”
Sci. Rep.
6
,
1
15
(
2016
).
29.
Y.
Li
,
C.
Shen
,
J.
Tan
,
X.
Wen
,
M.
Sun
,
G.
Huang
,
S.
Liu
, and
Z.
Liu
, “
Fast quantitative phase imaging based on Kramers-Kronig relations in space domain
,”
Opt. Express
29
,
41067
41080
(
2021
).
30.
Y.
Rivenson
,
Y.
Zhang
,
H.
Günaydın
,
D.
Teng
, and
A.
Ozcan
, “
Phase recovery and holographic image reconstruction using deep learning in neural networks
,”
Light Sci. Appl.
7
,
17141
(
2018
).
31.
Y.
Rivenson
,
A.
Stern
, and
B.
Javidi
, “
Overview of compressive sensing techniques applied in holography
,”
Appl. Opt.
52
,
A423
A432
(
2013
).
32.
D. J.
Brady
,
K.
Choi
,
D. L.
Marks
,
R.
Horisaki
, and
S.
Lim
, “
Compressive holography
,”
Opt. Express
17
,
13040
13049
(
2009
).
33.
L.
Denis
,
D.
Lorenz
,
E.
Thiébaut
,
C.
Fournier
, and
D.
Trede
, “
Inline hologram reconstruction with sparsity constraints
,”
Opt. Lett.
34
,
3475
3477
(
2009
).
34.
C.
Fournier
,
L.
Denis
,
E.
Thiebaut
,
T.
Fournel
, and
M.
Seifi
, “
Inverse problem approaches for digital hologram reconstruction
,”
Proc. SPIE
8043
,
80430S
(
2011
).
35.
X.
Chen
,
D.
Yang
,
Q.
Zhang
, and
J.
Liang
, “
L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography
,”
J. Appl. Phys.
115
,
184702
(
2014
).
36.
W.
Zhang
,
L.
Cao
,
D. J.
Brady
,
H.
Zhang
,
J.
Cang
,
H.
Zhang
, and
G.
Jin
, “
Twin-image-free holography: A compressive sensing approach
,”
Phys. Rev. Lett.
121
,
093902
(
2018
).
37.
Y.
Rivenson
,
A.
Stern
, and
J.
Rosen
, “
Compressive multiple view projection incoherent holography
,”
Opt. Express
19
,
6109
6118
(
2011
).
38.
C.
Gaur
,
B.
Mohan
, and
K.
Khare
, “
Sparsity-assisted solution to the twin image problem in phase retrieval
,”
J. Opt. Soc. Am. A
32
,
1922
1927
(
2015
).
39.
R.
Horisaki
,
Y.
Ogura
,
M.
Aino
, and
J.
Tanida
, “
Single-shot phase imaging with a coded aperture
,”
Opt. Lett.
39
,
6466
6469
(
2014
).
40.
Y.
Rivenson
,
Y.
Wu
,
H.
Wang
,
Y.
Zhang
,
A.
Feizi
, and
A.
Ozcan
, “
Sparsity-based multi-height phase recovery in holographic microscopy
,”
Sci. Rep.
6
,
37862
(
2016
).
41.
C.
Guo
,
X.
Liu
,
X.
Kan
,
F.
Zhang
,
J.
Tan
,
S.
Liu
, and
Z.
Liu
, “
Lensfree on-chip microscopy based on dual-plane phase retrieval
,”
Opt. Express
27
,
35216
35229
(
2019
).
42.
F.
Eilenberger
,
S.
Minardi
,
D.
Pliakis
, and
T.
Pertsch
, “
Digital holography from shadowgraphic phase estimates
,”
Opt. Lett.
37
,
509
511
(
2012
).
43.
F.
Momey
,
L.
Denis
,
T.
Olivier
, and
C.
Fournier
, “
From Fienup’s phase retrieval techniques to regularized inversion for in-line holography: Tutorial
,”
J. Opt. Soc. Am. A
36
,
D62
D80
(
2019
).
44.
H. H.
Bauschke
,
P. L.
Combettes
, and
D. R.
Luke
, “
Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization
,”
J. Opt. Soc. Am. A
19
,
1334
1345
(
2002
).
45.
H. H.
Bauschke
,
P. L.
Combettes
, and
D. R.
Luke
, “
Hybrid projection–reflection method for phase retrieval
,”
J. Opt. Soc. Am. A
20
,
1025
1034
(
2003
).
46.
O.
Mudanyali
,
C.
Oztoprak
,
D.
Tseng
,
A.
Erlinger
, and
A.
Ozcan
, “
Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy
,”
Lab Chip
10
,
2419
2423
(
2010
).
47.
T.
Latychevskaia
and
H.-W.
Fink
, “
Practical algorithms for simulation and reconstruction of digital in-line holograms
,”
Appl. Opt.
54
,
2424
2434
(
2015
).
48.
L. I.
Rudin
,
S.
Osher
, and
E.
Fatemi
, “
Nonlinear total variation based noise removal algorithms
,”
Phys. D: Nonlinear Phenom.
60
,
259
268
(
1992
).
49.
V.
Agarwal
, “
Total variation regularization and l-curve method for the selection of regularization parameter
,”
ECE599
21
,
1
31
(
2003
).
50.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Annu. Rev. Mater. Sci.
37
,
550
575
(
1998
).
51.
Z.
Wang
,
A. C.
Bovik
,
H. R.
Sheikh
, and
E. P.
Simoncelli
, “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Proc.
13
,
600
612
(
2004
).
52.
H. P. R.
Gurram
,
P.
Panta
,
V. P.
Pandiyan
,
I.
Ghori
, and
R.
John
, “
Digital holographic microscopy for quantitative and label-free oral cytology evaluation
,”
Opt. Eng.
59
,
024105
(
2020
).
53.
R. A.
Drezek
,
M.
Guillaud
,
T. G.
Collier
,
I.
Boiko
,
A.
Malpica
,
C. E.
MacAulay
,
M.
Follen
, and
R. R.
Richards-Kortum
, “
Light scattering from cervical cells throughout neoplastic progression: Influence of nuclear morphology, DNA content, and chromatin texture
,”
J. Biomed. Opt.
8
,
7
16
(
2003
).
You do not currently have access to this content.