The surface erosion of polyethylene is interrogated using pulsed x rays at the Z Machine (Sandia National Laboratories) and with proton beams at the Gamble II generator (Naval Research Laboratory) to validate a coupled model for volumetric thermal ablation, photoionization, finite-rate decomposition, and molecular recombination of radicals. The intense radiation pulses (up to 1014W/m2 over tens of nanoseconds) are used to generate one-dimensional vapor flows with low ionization fractions and a simplified geometry compared to typical laser ablation, allowing for evaluation of the model under local thermal equilibrium conditions. Areal momentum carried by the ensuing uniaxial hydrodynamic shock is used to indicate the extent of ablation. The threshold fluence for ablation is found to be in close correspondence with the bulk melt transition, and reasonable agreement with the model is obtained for peak temperatures in polyethylene up to 5500 K and heating rates up to 1011K/s where thermal decomposition reactions are also active.

1.
T.
Gutowski
et al., “
Note on the rate and energy efficiency limits for additive manufacturing
,”
J. Ind. Ecol.
21
,
S69
S79
(
2017
).
2.
J.
Chalupsky
et al., “Ablation of organic molecular solids by focused soft x-ray free-electron laser radiation,” in
X-Ray Lasers 2006. Springer Proceedings in Physics
, edited by K. Janulewicz and P. Nickles (
Springer
,
Dordrecht
,
2007
), Vol. 115.
3.
T.
Lippert
, “Laser application of polymers,” in Polymers and Light. Advances in Polymer Science (Springer, Berlin, 2004), Vol. 168, pp. 51–246.
4.
L.
Juha
et al., “
Short-wavelength ablation of molecular solids: Pulse duration and wavelength effects
,”
J. Micro/Nanolithogr., MEMS, MOEMS
4
,
033007
(
2005
).
5.
J.
Chalupsky
et al., “
Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses
,”
Opt. Express
17
,
208
217
(
2019
).
6.
M.
Toufarova
et al., “
Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation
,”
Phys. Rev. B
96
,
214101
(
2017
).
7.
N.
Arnold
and
N.
Bityurin
, “
Laser direct-write techniques for printing of complex materials
,”
MRS Bull.
32
,
23
32
(
1999
).
8.
S.
Georgiou
and
A.
Koubenakis
, “
Laser-induced material ejection from model molecular solids and liquids: Mechanisms implications and applications
,”
Chem. Rev.
103
,
349
394
(
2003
).
9.
T.
Lippert
and
T.
Dickinson
, “
Chemical and spectroscopic aspects of polymer ablation: Special features and novel directions
,”
Chem. Rev.
103
,
453
485
(
2003
).
10.
F.
Brygo
et al., “
Laser heating and ablation at high repetition rate in thermal confinement regime
,”
Appl. Surf. Sci.
252
,
8314
8318
(
2006
).
11.
T.
Lippert
, “
Laser application of polymers
,” in
Polymers and Light, Advances in Polymer Science
, Vol. 168, edited by T. Lippert (
Springer
,
2004
), pp.
51
246
.
12.
L.
Zhigilei
et al., “
Computer simulations of laser ablation of molecular substrates
,”
Chem. Rev.
103
,
321
347
(
2003
).
13.
B.
Rosner
et al., “
High resolution beam profiling of x-ray free electron laser radiation by polymer imprint development
,”
Opt. Express
25
,
30686
30695
(
2017
).
14.
I. A.
Maqkhotkin
et al., “
Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold
,”
J. Synchrotron Radiat.
25
,
77
84
(
2018
).
15.
T.
Yabe
et al., “
Soft x-ray driven ablation and its positive use for a new efficient acceleration
,”
Jpn. J. Appl. Phys.
22
,
L88
L90
(
1983
).
16.
R. E.
Olson
et al., “
X-ray ablation rates in inertial confinement fusion capsule materials
,”
Phys. Plasmas
18
,
032706
(
2011
).
17.
M. D.
Rosen
, “
The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial
,”
Phys. Plasmas
6
,
1690
1699
(
1999
).
18.
X. P.
Zhu
et al., “
Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation
,”
Rev. Sci. Instrum.
78
,
023301
(
2007
).
19.
N. W.
Moore
et al., “
Model for photothermal ionization and molecular recombination during pulsed ablation of polyethylene
,”
J. Appl. Phys.
128
,
125902
(
2020
).
20.
I.
Lee
et al., “
Direct measurement of polymer temperature during laser ablation using a molecular thermometer
,”
J. Appl. Phys.
72
,
2440
2448
(
1992
).
21.
S.
Kuper
et al., “
Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling
,”
Appl. Phys. A
56
,
43
50
(
1993
).
22.
J. M. D.
Lane
and
N. W.
Moore
, “
Molecular and kinetic models for high-rate thermal degradation of polyethylene
,”
J. Phys. Chem. A
122
,
3962
3970
(
2018
).
23.
S. N.
Luo
et al., “
Laser-induced shock waves in condensed matter: Some techniques and applications
,”
High. Pressure Res.
24
,
409
422
(
2004
).
24.
L.
Urech
and
T.
Lippert
, “Photoablation of polymer materials,” in Photochemistry and Photophysics of Polymer Materials (John Wiley & Sons, Inc., 2010), pp. 541–568.
25.
S.
Ravi-Kumar
,
B.
Lies
,
X.
Zhang
,
H.
Lyu
, and
H.
Qin
, “
Laser ablation of polymers: A review
,”
Polym. Int.
68
,
1391
1401
(
2019
).
26.
N. M.
Bulgakova
and
A. V.
Bulgakov
, “
Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion
,”
Appl. Phys. A
73
,
199
208
(
2001
).
27.
J. R.
Davies
et al., “
Filamented plasmas in laser ablation of solids
,”
Plasma Phys. Controlled Fusion
51
,
035013
(
2009
).
28.
B.
Garrison
,
T. E.
Itina
, and
L. V.
Zhigilei
, “
Limit of overheating and the threshold behavior in laser ablation
,”
Phys. Rev. E
68
,
041501
(
2003
).
29.
M.
Okoshi
and
N.
Inoue
, “
Femtosecond laser ablation of polyethylene
,”
Jpn. J. Appl. Phys.
42
,
L36
L38
(
2003
).
30.
L.
Torrisi
et al., “
Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser
,”
Appl. Surf. Sci.
227
,
164
174
(
2004
).
31.
T.
Hurtony
, “Simulation and modeling of laser ablation,” in 31st International Spring Seminar on Electronics Technology: Reliability and Life-Time Prediction, Budapest, Hungary (IEEE, 2008).
32.
H. D.
Gai
and
G. A.
Voth
, “
A computer simulation method for studying the ablation of polymer surfaces by ultraviolet laser radiation
,”
J. Appl. Phys.
71
,
1415
1420
(
1992
).
33.
N.
Bityurin
et al., “
Models for laser ablation of polymers
,”
Chem. Rev.
103
,
519
552
(
2003
).
34.
B.
Iwan
et al., “
“Modeling of soft x-ray induced ablation in solids
,”
Proc. SPIE
8077
,
807705
(
2011
).
35.
N.
Medvedev
et al., “
An interplay of various damage channels in polyethylene exposed to ultra-short XUV/x-ray pulses
,”
Phys. Chem. Chem. Phys.
23
,
16193
16205
(
2021
).
36.
K. K.
Nakanishi
et al., “
Deposition of polyethylene thin films using synchrotron radiation ablation
,”
Jpn. J. Appl. Phys.
38
,
863
867
(
1999
).
37.
B. M.
Weon
et al., “
Ablation and deposition of poly(dimethylsiloxane) with x-rays
,”
ChemPhysChem
11
,
115
118
(
2010
).
38.
T.
Kanashima
et al., “
Preparation and characterization of fluorocarbon thin films deposited by soft x-ray ablation of polytetrafluoroethylene
,”
Jpn. J. Appl. Phys.
42
,
L603
L606
(
2003
).
39.
H.
Fiedorowicz
et al., “Ablation of organic polymers by direct exposure to radiation from a laser plamsa x-ray source,” in Microprocesses and Nanotechnology Conference, Tokyo, Japan (IEEE, 2003). doi: 10.1109/IMNC.2003.1268748
40.
J.
Gardelle
and
N.
Szalek
, “
High power electron beam interaction with an aluminum target: Measurements and simulations
,”
J. Appl. Phys.
126
,
153301
(
2019
).
41.
F. C.
Perry
, “
Thermoelastic response of polycrystalline metals to relativistic electron beam absorption
,”
J. Appl. Phys.
41
,
5017
5022
(
1970
).
42.
F. C.
Perry
, “
Electron beam induced stress waves in solids
,”
Appl. Phys. Lett.
17
,
478
481
(
1970
).
43.
R. G.
Oswald
et al., “
Gruneisen data from the one-dimensional thermoelastic response of elastic materials
,”
Appl. Phys. Lett.
16
,
24
26
(
1970
).
44.
R. G.
Oswald
et al., “
The dynamic response of solid exposed to a pulsed-electron beam
,”
Appl. Phys. Lett.
13
,
279
281
(
1968
).
45.
J. J.
MacFarlane
,
I. E.
Golovkin
, and
P. R.
Woodruff
, “
HELIOS-CR–A 1-D magnetohydrodynamics code with inline atomic kinetics modeling
,”
J. Quant. Spectrosc. Radiat. Transf.
99
,
381
397
(
2006
).
46.
A.
Peacock
,
Handbook of Polyethylene: Structure, Properties and Applications
(
Marcel Dekker
,
New York
,
2000
).
47.
D. B.
Sinars
et al., “
Review of pulsed power-driven high energy density physics research on Z at Sandia
,”
Phys. Plasmas
27
,
070501
(
2020
).
48.
M.
Krishnan
et al., “
Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the z accelerator
,”
Rev. Sci. Instrum.
84
,
063504
(
2013
).
49.
A. J.
Harvey-Thompson
et al., “
Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z
,”
Phys. Plasmas
23
,
101203
(
2016
).
50.
J. L.
Giuliani
and
R. J.
Commisso
, “
A review of the gas-puff z-pinch as an x-ray and neutron source
,”
IEEE Trans. Plasma Sci.
43
, 2385–2453 (
2015
).
51.
B.
Jones
et al., “
Effect of gradients at stagnation on k-shell x-ray yield in reproducible, high-current fast, Ar gas puff implosions
,”
Phys. Plasmas
22
,
020706–1
020706–5
(
2015
).
52.
B.
Jones
et al., “
A renewed capability for gas puff science on Sandia's Z machine
,”
IEEE Trans. Plasma Sci.
42
,
1145
1152
(
2013
).
53.
P. L.
Coleman
, “
Development and use of a two-dimensional interferometer to measure mass flow from a multi-shell Z-pinch gas puff
,”
Rev. Sci. Instrum.
83
,
083116
(
2012
).
54.
J.
Peacock
,
R. J.
Speer
, and
M. G.
Hobby
, “
Spectra of highly ionized neon and argon in plasma focus discharge
,”
J. Phys. B
2
,
798
810
(
1969
).
55.
D. B.
Sinars
et al., “
Compact, rugged in-chamber transmission spectrometer (7–28 keV) for the Sandia Z-facility
,”
Rev. Sci. Instrum.
82
,
063113
(
2011
).
56.
B. L.
Henke
,
E. M.
Gullikson
, and
J. C.
Davis
, “
X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30000 ev, Z = 1-92
,”
At. Data Nucl. Data Tables
54
,
181
342
(
1993
).
57.
G.
Dunham
et al., “
Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a ditabis super micron image plate scanner
,”
Rev. Sci. Instrum.
87
,
11E301
(
2016
).
58.
M.
Sanchez del Rio
and
R. J.
Dejus
, “
Recent developments of the x-ray optics software toolkit
,”
Proc. SPIE
8141
,
814115
(
2011
).
59.
M. C.
Jones
et al., “
X-ray power and yield measurements at the refurbished Z machine
,”
Rev. Sci. Instrum.
85
,
083501
(
2014
).
60.
G. A.
Chandler
et al., “
Filtered x-ray diode diagnostics fielded on the Z accelerator for source power measurements
,”
Rev. Sci. Instrum.
70
,
561
(
1999
).
61.
D.
Ampleford
et al., “
Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility
,”
Phys. Plasmas
21
,
031201
(
2014
).
62.
J. D.
Shipman
, “
The electrical design of the NRL gamble II, 100 kilojoule, 50 nanosecond, water dielectric pulse generator used in electron beam experiments
,”
IEEE Trans. Nucl. Sci.
18
,
243
246
(
1971
).
63.
J. R.
Boller
,
J. K.
Burton
, and
J. D.
Shipman
, Jr.
, “Status of the upgraded version of the NRL gamble II pulse power generator,” in International Pulsed Power Conference, Lubbock, TX (IEEE, 1979).
64.
B.
Secerov
and
N.
Mikanovic
, “The combined radiochromic film and calorimetric measurements of pulsed electron beams using plastic spacers,” in 5th Yugoslav Nuclear Society Conference, Belgrade (IEEE, 2004).
65.
J. W.
Hansen
,
M.
Wille
, and
K. J.
Olsen
, “
Problems associated with the use of the radiochromic dye film as a radiation dose meter
,”
Radiat. Phys. Chem.
23
,
455
462
(
1984
).
66.
J. F.
Ziegler
and
J. P.
Biersack
, See http://www.srim.org/ for “SRIM—The Stopping and Range of Ions in Solids” (1985).
67.
B.
Secerov
and
N.
Mikanovic
, “The stopping and range of ions in matter,” in Treatise on Heavy-Ion Science, edited by D. A. Bromley (Springer, 1985).
68.
J. P.
Biersack
and
L.
Haggmark
, “
A Monte Carlo computer program for the transport of energetic ions in amorphous targets
,”
Nucl. Instrum. Methods
174
,
257
269
(
1980
).
69.
D. H.
Dolan
and
S. C.
Jones
, “
Push-pull analysis of photonic Doppler velocimetry measurements
,”
Rev. Sci. Instrum.
78
,
076102
(
1999
).
70.
D. H.
Dolan
and
S. C.
Jones
, “THRIVE: A data reduction program for three-phase PDV/PDI and visar measurements,” Technical Report SAND2008-3871, 2008.
71.
T.
Ao
and
D. H.
Dolan
, “SIRHEN: A data reduction program for photonic Doppler velocimetry measurements,” Technical Report SAND2010-3628, 2010.
72.
B. J.
Jensen
,
D. B.
Holtkamp
,
P. A.
Rigg
et al., “
Accuracy limits and window corrections for photon Doppler velocimetry
,”
J. Appl. Phys.
101
,
013523
(
2007
).
73.
T. J.
Webb
et al., “A review of radiation, optical, power flow, and electrical diagnostics at the Z Facility: Layout and techniques utilized to operate in the harsh environment,” Rev. Sci. Instrum. (submitted 2022).
74.
P. E.
Specht
,
B.
Stoltzfus
, and
S.
Root
, “Low impedance window characterization for unreacted equation of state measurements of explosives,” in 16th International Detonation Symposium, Cambridge, MD, 15–20 July 2018.
75.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
).
76.
L. M.
Barker
and
R. E.
Hollenbach
, “
Shock-wave studies of PMMA, fused silica, and sapphire
,”
J. Appl. Phys.
41
,
4208
4226
(
1970
).
77.
J. D.
Coe
, “
The equation of state and shcok-driven decomposition of polymethylmethacrylate (PMMA)
,”
J. Appl. Phys.
131
,
125108
(
2022
).
78.
J. L.
Jordan
,
D.
Casem
, and
M.
Zellner
, “
Shock response of polymethylmethacrylate
,”
J. Dyn. Behav. Mater.
2
,
372
378
(
2016
).
79.
D.
Lacina
,
C.
Neel
, and
D. M.
Dattlebaum
, “
Shock response of poly[methylmethacrylate] (PMMA) measured with embedded electromagnetic gauges
,”
J. Appl. Phys.
123
,
185901
(
2018
).
80.
C. A.
Forest
, “Impulse time-integral function and lagrangian analysis,” in Shock Compression of Condensed Matter (Elsevier Science Publishers, Albuquerque, NM, 1989).
81.
J. J.
Sanchez
, “
Inelastic equation of state for solids
,”
Comput. Methods Appl. Eng.
375
,
113622
(
2021
).
82.
G. I.
Kerley
, “CTH reference manual: The equation of state package,” Technical report SAND98-0947, 1998.
83.
S. W.
Bova
et al., “ALEGRA user manual,” Technical report, 2020.
84.
B. C.
Franke
et al., “ITS version 6: The integrated tiger series of coupled electron/photon monte carlo transport codes,” Technical report, 2008.
85.
J. T.
Goorley
et al., “Initial MCNP6 release overview—MCNP6 version 1.0,” Technical report, 2013.
86.
C.
Drumm
, “
Modeling of spacecraft proton shielding by the discrete ordinates method
,”
Trans. Am. Nucl. Soc.
65
,
359
(
1992
).
87.
J. J.
MacFarlane
et al., “Simulation of the ionization dynamics of aluminum irradiated by intense short-pulse lasers,” in Inertial Fusion Sciences and Application (American Nuclear Society, 2004), pp. 457–460.
88.
J. C.
Bushnell
and
D. J.
McCloskey
, “
Thermoelastic stress production in solids
,”
J. Appl. Phys.
39
,
5541
5546
(
1968
).
89.
L. W.
Morland
, “
Generation of thermoelastic stress waves by impulsive electromagnetic radiation
,”
AIAA J.
6
,
1063
1066
(
1968
).
90.
X.
Wang
and
X.
Xu
, “
Thermoelastic wave induced by pulsed laser heating
,”
Appl. Phys. A
73
,
107
114
(
2001
).
91.
P. M.
Celliers
, “
Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al
,”
J. Appl. Phys.
98
,
113529
(
2005
).
92.
U.
Gaur
et al., “
Heat-capacity and other thermodynamic properties of linear macromolecules. VI. Acrylic polymers
,”
J. Phys. Chem. Ref. Data
11
,
1065
1089
(
1982
).
93.
U.
Gaur
and
B.
Wunderlich
, “
Heat capacity and other thermodynamic properties of linear macromolecules. II. Polyethylene
,”
J. Phys. Chem. Ref. Data
10
,
119
152
(
1981
).
94.
B. A.
Briskman
, “Specificity of proton irradiation effects on polymers,” in 7th International Symposium on Ionizing Radiation and Polymers, Antalya, Turkey (2007), p. 265.
95.
S. R.
Allayarov
et al., “
Influence of accelerated protons on the molecular–topological structure of polyethylene
,”
High Energy Chem.
54
,
368
373
(
2020
).
96.
R. C.
Alig
and
S.
Bloom
, “
Electron-hole-pair creation energies in semiconductors
,”
Phys. Rev. Lett.
35
,
1522
1525
(
1975
).
97.
L. H.
Chen
,
T. D.
Huan
, and
R.
Ramprasad
, “
Electronic structure of polyethylene: Role of chemical, morphological and interfacial complexity
,”
Sci. Rep.
7
,
6128
(
2017
).
You do not currently have access to this content.