We report a detailed study of the bipolar persistent photoconductivity in an HgTe/CdHgTe double quantum well (DQW), which can be a perspective for studying topological states in these structures. Photoconductivity spectra measurements in the range of 1.1–3.1 eV as well as transport measurements under different illumination conditions were performed at T = 4.2 K. Based on the results, the processes occurring in the structure under illumination and leading to a change in the carrier concentration in the DQW have been established. They include interband generation in the CdTe cap layer and in the CdHgTe barrier layer and electron transitions from the spin-split band in the CdHgTe barrier layer to the conduction band in the CdTe cap layer. The presence of the CdTe cap layer and the appropriate cadmium fraction in the CdHgTe barrier layers have been shown to be the main factors determining the key features of the spectra. Finally, we suggest an effective method of controlling the conductivity type of HgTe/CdHgTe structures using light with different wavelengths.

1.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
, (
2007
).
2.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
I.
Knez
,
R.-R.
Du
, and
G.
Sullivan
, “
Evidence for helical edge modes in inverted InAs/GaSb quantum wells
,”
Phys. Rev. Lett.
107
,
136603
(
2011
).
4.
C. C.
Liu
,
W. X.
Feng
, and
Y. G.
Yao
, “
Quantum spin Hall effect in silicene and two-dimensional germanium
,”
Phys. Rev. Lett.
107
,
076802
(
2011
).
5.
J. J.
Zhou
,
W. X.
Feng
,
C. C.
Liu
,
S.
Guan
, and
Y. G.
Yao
, “
Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4
,”
Nano Lett.
14
,
4767
(
2014
).
6.
Y.
Ma
,
L.
Kou
,
Y.
Dai
, and
T.
Heine
, “
Proposed two-dimensional topological insulator in SiTe
,”
Phys. Rev. B
94
,
201104(R)
(
2016
).
7.
D. E.
Theodorou
,
H. J.
Queisser
, and
E.
Bauser
, “
Profiling of deep impurities by persistent photocurrent measurements
,”
Appl. Phys. Lett.
41
,
628
(
1982
).
8.
H. X.
Jiang
and
J. Y.
Lin
, “
Persistent photoconductivity and related critical phenomena in Zn0.3Cd0.7Se
,”
Phys. Rev. B
40
,
10025
(
1989
).
9.
S. S.
Krishtopenko
,
A. V.
Ikonnikov
,
M.
Orlita
,
Y. G.
Sadofyev
,
M.
Goiran
,
F.
Teppe
,
W.
Knap
, and
V. I.
Gavrilenko
, “
Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells
,”
J. Appl. Phys.
117
,
112813
(
2015
).
10.
L. S.
Bovkun
,
A. V.
Ikonnikov
,
V. Y.
Aleshkin
,
K. E.
Spirin
,
V. I.
Gavrilenko
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
,
F.
Teppe
,
B. A.
Piot
,
M.
Potemski
, and
M.
Orlita
, “
Landau level spectroscopy of valence bands in HgTe quantum wells: Effects of symmetry lowering
,”
J. Phys.: Condens. Matter
31
,
145501
(
2019
).
11.
I. D.
Nikolaev
,
T. A.
Uaman Svetikova
,
V. V.
Rumyantsev
,
M. S.
Zholudev
,
D. V.
Kozlov
,
S. V.
Morozov
,
S. A.
Dvoretsky
,
N. N.
Mikhailov
,
V. I.
Gavrilenko
, and
A. V.
Ikonnikov
, “
Probing states of a double acceptor in CdHgTe heterostructures via optical gating
,”
JETP Lett.
111
,
575
(
2020
).
12.
A.
Kastalsky
and
J. C. M.
Hwang
, “
Study of persistent photoconductivity effect in n-type selectively doped AlGaAs/GaAs heterojunction
,”
Solid State Commun.
51
,
317
(
1984
).
13.
W. C.
Wang
,
L. C.
Tsai
,
J. C.
Fan
, and
Y. F.
Chen
, “
Positive and negative persistent photoconductivities in semimetallic AlxGa1–xSb/InAs quantum wells
,”
J. Appl. Phys.
86
,
3152
(
1999
).
14.
L. C.
Tsai
,
C. F.
Huang
,
J. C.
Fan
,
Y. H.
Chang
, and
Y. F.
Chen
, “
Persistent photoconductivity in SiGe/Si quantum wells
,”
J. Appl. Phys.
84
,
877
(
1998
).
15.
D. A.
Anderson
,
S. J.
Bass
,
M. J.
Kane
, and
L. L.
Taylor
, “
Transport and persistent photoconductivity in InGaAs/InP single quantum wells
,”
Appl. Phys. Lett.
49
,
1360
(
1986
).
16.
K. E.
Spirin
,
D. M.
Gaponova
,
K. V.
Marem’yanin
,
V. V.
Rumyantsev
,
V. I.
Gavrilenko
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Bipolar persistent photoconductivity in HgTe/CdHgTe (013) double quantum-well heterostructures
,”
Semiconductors
52
,
1586
(
2018
).
17.
K. E.
Spirin
,
D. M.
Gaponova
,
V. I.
Gavrilenko
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Residual-photoconductivity spectra in HgTe/CdHgTe quantum-well heterostructures
,”
Semiconductors
53
,
1363
(
2019
).
18.
G.
Tuttle
,
H.
Kroemer
, and
J. H.
English
, “
Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells
,”
J. Appl. Phys.
65
,
5239
(
1989
).
19.
I.
Lo
,
W. C.
Mitchel
,
M. O.
Manasreh
,
C. E.
Stutz
, and
K. R.
Evans
, “
Negative persistent photoconductivity in the Al0.6Ga0.4Sb/InAs quantum wells
,”
Appl. Phys. Lett.
60
,
751
(
1992
).
20.
A. S.
Chaves
and
H.
Chacham
, “
Negative photoconductivity in semiconductor heterostructures
,”
Appl. Phys. Lett.
66
,
727
(
1995
).
21.
C.
Gauer
,
J.
Scriba
,
A.
Wixforth
,
J. P.
Kotthaus
,
C.
Nguyen
,
G.
Tuttle
,
J. H.
English
, and
H.
Kroemer
, “
Photoconductivity in AlSb/InAs quantum wells
,”
Semicond. Sci. Technol.
8
,
S137
(
1993
).
22.
V. Y.
Aleshkin
,
V. I.
Gavrilenko
,
D. M.
Gaponova
,
A. V.
Ikonnikov
,
K. V.
Marem’yanin
,
S. V.
Morozov
,
Y. G.
Sadofyev
,
S. R.
Johnson
, and
Y. H.
Zhang
, “
Spectra of persistent photoconductivity in InAs/AlSb quantum-well heterostructures
,”
Semiconductors
39
,
22
(
2005
).
23.
V. I.
Gavrilenko
,
A. V.
Ikonnikov
,
S. S.
Krishtopenko
,
A. A.
Lastovkin
,
K. V.
Marem’yanin
,
Y. G.
Sadofyev
, and
K. E.
Spirin
, “
Persistent photoconductivity in InAs/AlSb heterostructures with double quantum wells
,”
Semiconductors
44
,
616
(
2010
).
24.
K. E.
Spirin
,
K. P.
Kalinin
,
S. S.
Krishtopenko
,
K. V.
Maremyanin
,
V. I.
Gavrilenko
, and
Y. G.
Sadofyev
, “
Features of the persistent photoconductivity in InAs/AlSb heterostructures with double quantum wells and a tunneling-transparent barrier
,”
Semiconductors
46
,
1396
(
2012
).
25.
S. S.
Krishtopenko
,
W.
Knap
, and
F.
Teppe
, “
Phase transitions in two tunnel-coupled HgTe quantum wells: Bilayer graphene analogy and beyond
,”
Sci. Rep.
6
,
30755
(
2016
).
26.
G. M.
Gusev
,
E. B.
Olshanetsky
,
F. G. G.
Hernandez
,
O. E.
Raichev
,
N. N.
Mikhailov
, and
S. A.
Dvoretsky
, “
Two-dimensional topological insulator state in double HgTe quantum well
,”
Phys. Rev. B
101
,
241302(R)
(
2020
).
27.
N. N.
Mikhailov
,
R. N.
Smirnov
,
S. A.
Dvoretsky
,
Y. G.
Sidorov
,
V. A.
Shvets
,
E. V.
Spesivtsev
, and
S. V.
Rykhlitski
, “
Growth of Hg1–xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control
,”
Int. J. Nanotechnol.
3
,
120
(
2006
).
28.
S.
Dvoretsky
,
N.
Mikhailov
,
Y.
Sidorov
,
V.
Shvets
,
S.
Danilov
,
B.
Wittman
, and
S.
Ganichev
, “Growth of HgTe Quantum Wells for IR to THz Detectors,”
J. Electron. Mater.
39
,
918
(
2010
).
29.
A. V.
Ikonnikov
,
L. S.
Bovkun
,
V. V.
Rumyantsev
,
S. S.
Krishtopenko
,
V.
Ya Aleshkin
,
A. M.
Kadykov
,
M.
Orlita
,
M.
Potemski
,
V. I.
Gavrilenko
,
S. V.
Morozov
,
S. A.
Dvoretsky
, and
N. N.
Mikhailov
, “
On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation
,”
Semiconductors
51
,
1531
(
2017
).
30.
K. V.
Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
31.
H. L.
Störmer
,
A. C.
Gossard
,
W.
Wiegmann
, and
K.
Baldwin
, “
Dependence of electron mobility in modulation-doped GaAs-(AlGa) As heterojunction interfaces on electron density and Al concentration
,”
Appl. Phys. Lett.
39
,
912
(
1981
).
32.
M. V.
Yakunin
,
A. V.
Suslov
,
M. R.
Popov
,
E. G.
Novik
,
S. A.
Dvoretsky
, and
N. N.
Mikhailov
, “
Magnetotransport in double quantum well with inverted energy spectrum: HgTe/CdHgTe
,”
Phys. Rev. B
93
,
085308
(
2016
).
33.
J. P.
Laurenti
,
J.
Camassel
, and
A.
Bouhemadou
, “
Temperature dependence of the fundamental absorption edge of mercury cadmium telluride
,”
J. Appl. Phys.
67
,
6454
(
1990
).
34.
E. G.
Novik
,
A.
Pfeuffer-Jeschke
,
T.
Jungwirth
,
V.
Latussek
,
C. R.
Becker
,
G.
Landwehr
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Band structure of semimagnetic Hg1–yMnyTe quantum well
,”
Phys. Rev. B
72
,
035321
(
2005
).
35.
S. S.
Krishtopenko
,
I.
Yahniuk
,
D. B.
But
,
V. I.
Gavrilenko
,
W.
Knap
, and
F.
Teppe
, “
Pressure- and temperature-driven phase transitions in HgTe quantum wells
,”
Phys. Rev. B
94
,
245402
(
2016
).
36.
L. S.
Bovkun
,
A. V.
Ikonnikov
,
V.
Ya Aleshkin
,
K. V.
Maremyanin
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
,
S. S.
Krishtopenko
,
F.
Teppe
,
B. A.
Piot
,
M.
Potemski
,
M.
Orlita
, and
V. I.
Gavrilenko
, “
Magnetospectroscopy of double HgTe/CdHgTe QWs with inverted band structure in high magnetic fields up to 30 T
,”
Opto-electron. Rev.
27
,
213
(
2019
).
37.
M. V.
Yakunin
,
S. S.
Krishtopenko
,
W.
Desrat
,
S. M.
Podgornykh
,
M. R.
Popov
,
V. N.
Neverov
,
S. A.
Dvoretsky
,
N. N.
Mikhailov
,
F.
Teppe
, and
B.
Jouault
, “
Unconventional reentrant quantum Hall effect in a HgTe/CdHgTe double quantum well
,”
Phys. Rev. B
102
,
165305
(
2020
).
38.
V. V.
Rumyantsev
,
D. V.
Kozlov
,
S. V.
Morozov
,
M. A.
Fadeev
,
A. M.
Kadykov
,
F.
Teppe
,
V. S.
Varavin
,
M. V.
Yakushev
,
N. N.
Mikhailov
,
S. A.
Dvoretskii
, and
V. I.
Gavrilenko
, “
Terahertz photoconductivity of double acceptors in narrow gap HgCdTe epitaxial films grown by molecular beam epitaxy on GaAs (013) and Si (013) substrates
,”
Semicond. Sci. Technol.
32
,
095007
(
2017
).

Supplementary Material

You do not currently have access to this content.