Despite the fact that zinc oxide is a well-known transparent oxide, several recent studies on “black” ZnO have renewed its potential for photocatalytic applications. We report on the control of oxygen deficiency in ZnO thin films grown at 300 °C on c-cut sapphire single-crystal substrates by pulsed electron beam deposition (PED) through a slight variation of argon pressure in PED. At a pressure of 2 × 10−2 mbar transparent, stoichiometric (ZnO) and crystalline films are obtained, while at 9 × 10−3 mbar black, oxygen-deficient (ZnO0.85) and amorphous films result. Stoichiometry, structural, and optoelectronic properties of transparent and black ZnO thin films were comparatively analyzed as a function of oxygen deficiency. Black ZnO thin films exhibit enhanced absorption in the visible and near-infrared due to oxygen deficiency, thus extending the range of applications of zinc oxide thin films from transparent electronics to solar absorbers and photocatalysis.

1.
C.
Klingshirn
,
J.
Fallert
,
H.
Zhou
,
J.
Sartor
,
C.
Thiele
,
F.
Maier-Flaig
,
D.
Schneider
, and
H.
Kalt
, “
65 years of ZnO research-old and very recent results
,”
Phys. Status Solidi B
247
,
1424
1447
(
2010
).
2.
K.
Ellmer
,
A.
Klein
, and
B.
Rech
, in
Transparent Conductive Zinc Oxide
(
Springer
,
2008
).
3.
J.
Wang
,
R.
Chen
,
L.
Xiang
, and
S.
Komarneni
, “
Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review
,”
Ceram. Int.
44
,
7357
7377
(
2018
).
4.
R. A.
Afre
,
N.
Sharma
, and
M.
Sharon
, “
Transparent conducting oxide films for various applications: A review
,”
Rev. Adv. Mater. Sci.
53
,
79
89
(
2018
).
5.
H.
Hosono
and
H.
Kumomi
,
Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory
(
John Wiley & Sons, Ltd
,
2022
).
6.
N.
Asakuma
,
H.
Hirashima
,
T.
Fukui
,
M.
Toki
,
K.
Awazu
, and
H.
Imai
, “
Photoreduction of amorphous and crystalline ZnO films
,”
Jpn. J. Appl. Phys.
41
,
3909
3915
(
2002
).
7.
J.
Tellier
,
D.
Kuscer
,
B.
Malic
,
J.
Gilensek
,
M.
Skarabot
,
J.
Kovac
,
G.
Goncalves
,
I.
Musevic
, and
M.
Kosec
, “
Transparent, amorphous and organics-free ZnO thin films produced by chemical solution deposition at 150 °C
,”
Thin Solid films
518
,
5134
5139
(
2010
).
8.
H.-C.
Tang
,
J.
Kim
,
H.
Hiramatsu
,
H.
Hosono
, and
T.
Kamiya
, “
Fabrication and opto-electrical properties of amorphous (Zn,B)O thin film by pulsed laser deposition
,”
J. Ceram. Soc. Jpn.
123
,
523
526
(
2015
).
9.
M.
Zubkins
,
J.
Gabrusenoks
,
G.
Chikvaidze
,
J.
Butikova
,
R.
Kalendarev
, and
L.
Bikse
, “
Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures
,”
J. Appl. Phys.
128
,
215303
(
2020
).
10.
J.
Bruncko
,
A.
Vincze
,
M.
Netrvalova
,
P.
Sutta
,
D.
Hasko
, and
M.
Michalka
, “
Annealing and crystallization of amorphous ZnO thin films deposited under cryogenic conditions by pulsed laser deposition
,”
Thin Solid Films
520
,
866
870
(
2011
).
11.
D. J.
Rogers
,
V. E.
Sandana
,
F.
Hosseini Teherani
,
R.
McClintock
,
M.
Razeghi
, and
H. J.
Drouhin
, “
Amorphous ZnO films grown by room temperature pulsed laser deposition on paper and mylar for transparent electronic applications
,”
Proc. SPIE
7940
,
79401K
(
2011
).
12.
D.-Y.
Cho
,
J. H.
Kim
,
K. D.
Na
,
J.
Song
,
C. S.
Hwang
,
B.-G.
Park
,
J.-Y.
Kim
,
C.-H.
Min
, and
S.-J.
Oh
, “
Spectroscopic evidence for limited carrier hopping interaction in amorphous ZnO film
,”
Appl. Phys. Lett.
95
,
261903
(
2009
).
13.
D.-Y.
Cho
,
J. H.
wan Kim
, and
C. S.
Hwang
, “
Electron hopping interactions in amorphous ZnO films probed by x-ray absorption near edge structure analysis
,”
Appl. Phys. Lett.
98
,
222108
(
2011
).
14.
Y.
Inoue
,
M.
Okamoto
,
T.
Kawahara
,
Y.
Okamoto
, and
J.
Morimoto
, “
Thermoelectric properties of amorphous zinc oxide thin films fabricated by pulsed laser deposition
,”
Mater. Trans.
46
,
1470
1475
(
2005
).
15.
W.
Chamorro
,
D.
Horwat
,
P.
Pigeat
,
P.
Miska
,
S.
Migot
,
F.
Soldera
,
P.
Boulet
, and
F.
Mücklich
, “
Near-room temperature single domain epitaxy of reactively sputtered ZnO films
,”
J. Phys. D: Appl. Phys.
46
,
235107
(
2013
).
16.
V.
Craciun
,
J.
Perrière
,
N.
Bassim
,
R. K.
Singh
,
D.
Craciun
, and
J.
Spear
, “
Low temperature growth of epitaxial ZnO films on (001) sapphire by ultraviolet assisted pulsed laser deposition
,”
Appl. Phys. A: Mater. Sci. Process.
69
,
S531
S533
(
1999
).
17.
A.
Badreldin
,
A.
Abdel-Wahab
, and
P. B.
Balbuena
, “
Local surface modulation activates metal oxide electrocatalyst for hydrogen evolution: Synthesis, characterization, and DFT study of novel black ZnO
,”
ACS Appl. Energy Mater.
3
(
3
),
10590
10599
(
2020
).
18.
S.
Varnagiris
,
M.
Urbonavicius
,
S.
Tuckute
, and
M.
Lelis
, “
Formation of Zn-rich ZnO films with improved bulk and surface characteristics by approach of magnetron sputtering technique
,”
Thin Solid Films
738
,
138967
(
2021
).
19.
Y.
Chen
,
P.
Schneider
,
B.-J.
Liu
,
S.
Borodin
,
B.
Ren
, and
A.
Erbe
, “
Electronic structure and morphology of dark oxides on zinc generated by electrochemical treatment
,”
Phys. Chem. Chem. Phys.
15
,
9812
9822
(
2013
).
20.
J.
Zuo
and
A.
Erbe
, “
Optical and electronic properties of native zinc oxide films on polycrystalline Zn
,”
Phys. Chem. Chem. Phys.
12
,
11467
11476
(
2010
).
21.
M.
Krzywiecki
,
L.
Grządziel
,
A.
Sarfraz
,
D.
Iqbal
,
A.
Szwajca
, and
A.
Erbe
, “
Zinc oxide as a defect-dominated material in thin films for photovoltaic applications—Experimental determination of defect levels, quantification of composition, and construction of band diagram
,”
Phys. Chem. Chem. Phys.
17
,
10004
10013
(
2015
).
22.
K.
Mika
,
K.
Syrek
,
T.
Uchacz
,
G. D.
Sulka
, and
L.
Zaraska
, “
Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting
,”
Electrochim. Acta
414
,
140176
(
2022
).
23.
K.
Mika
,
R. P.
Socha
,
P.
Nyga
,
E.
Wiercigroch
,
K.
Małek
,
M.
Jarosz
,
T.
Uchacz
,
G. D.
Sulka
, and
L.
Zaraska
, “
Electrochemical synthesis and characterization of dark nanoporous zinc oxide films
,”
Electrochim. Acta
305
,
349
359
(
2019
).
24.
R.
Masuda
,
D.
Kowalski
,
S.
Kitano
,
Y.
Aoki
,
T.
Nozawa
, and
H.
Habazaki
, “
Characterization of dark-colored nanoporous anodic films on zinc
,”
Coatings
10
,
1014
(
2020
).
25.
S.
Tricot
,
M.
Nistor
,
E.
Millon
,
C.
Boulmer-Leborgne
,
N. B.
Mandache
,
J.
Perrière
, and
W.
Seiler
, “
Epitaxial ZnO thin films grown by pulsed electron beam deposition
,”
Surf. Sci.
604
,
2024
2030
(
2010
).
26.
M.
Ozdogan
,
S.
Ygen
,
C.
Celebi
, and
G.
Utlu
, “
The comparison of transient photocurrent spectroscopy measurement of pulsed electron deposited ZnO thin films for air and vacuum ambient conditions
,”
Thin Solid Films
680
,
48
54
(
2019
).
27.
P.
Graziosi
,
M.
Prezioso
,
A.
Gambardella
,
C.
Kitts
,
R. K.
Rakshit
,
A.
Riminucci
,
I.
Bergenti
,
F.
Borgatti
,
C.
Pernechele
,
M.
Solzi
,
D.
Pullini
,
D.
Busquets-Mataix
, and
V. A.
Dediu
, “
Conditions for the growth of smooth La0.7Sr0.3MnO3 thin films by pulsed electron beam ablation
,”
Thin Solid Films
534
,
83
89
(
2013
).
28.
M.
Nistor
,
F.
Gherendi
, and
J.
Perrière
, “
Degenerate and non-degenerate In2O3 thin films by pulsed electron beam deposition
,”
Mater. Sci. Semicond. Process.
88
,
45
50
(
2018
).
29.
A.
Cyza
,
A.
Kopia
,
L.
Cieniek
, and
J.
Kusinski
, “
Structural characterization of Sr doped LaFeO3 thin films prepared by pulsed electron deposition method
,”
Mater. Today: Proc.
3
,
2707
2712
(
2016
).
30.
M.
Gu
,
S. A.
Wolf
, and
J.
Lu
, “
Transport phenomena in SrVO3/SrTiO3 superlattices & superstructures
,”
J. Phys. D: Appl. Phys.
51
,
10LT01
(
2018
).
31.
M.
Nistor
and
N. B.
Mandache
, “
Electron energy distribution function of a pulsed intense electron beam
,”
J. Optoelectron. Adv. Mater.
7
,
1619
1622
(
2005
).
32.
M.
Nistor
,
N. B.
Mandache
, and
J.
Perrière
, “
Pulsed electron beam deposition of oxide films
,”
J. Phys. D: Appl. Phys.
41
,
165205
(
2008
).
33.
E.
Dewald
,
M.
Ganciu
,
B. N.
Mandache
,
G. S.
Musa
,
M. G.
Nistor
,
A.-M.
Pointu
,
I.-I.
Popescu
,
K.
Frank
,
D. H. H.
Hoffmann
, and
R.
Stark
, “
Role of the multielectrode geometry in the generation of pulsed intense electron beam in preionization-controlled open ended hollow cathode transient discharges
,”
IEEE Trans. Plasma Sci.
25
,
279
283
(
1997
).
34.
M.
Nistor
,
P.
Charles
,
M.
Ganciu
,
M.
Lamoureux
,
N. B.
Mandache
, and
A. M.
Pointu
, “
Electron energy distribution in a transient open-ended hollow cathode discharge
,”
Plasma Sources Sci. Technol.
11
,
183
189
(
2002
).
35.
A.
Petitmangin
,
C.
Hebert
,
J.
Perrière
,
B.
Gallas
,
L.
Binet
,
P.
Barboux
, and
P.
Vermaut
, “
Metallic clusters in nonstoichiometric gallium oxide films
,”
J. Appl. Phys.
109
,
013711
(
2011
).
36.
L.
Nagarajan
,
R. A.
De Souza
,
D.
Samuelis
,
I.
Valov
,
A.
Borger
,
J.
Janek
,
K.-D.
Becker
,
P. C.
Schmidt
, and
M.
Martin
, “
A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide
,”
Nat. Mater.
7
,
391
398
(
2008
).
37.
P. P.
Murmu
,
A.
Shettigar
,
S. V.
Chong
,
Z.
Liu
,
D.
Goodacre
,
V.
Jovic
,
T.
Mori
,
K. E.
Smith
, and
J.
Kennedy
, “
Role of phase separation in nanocomposite indium-tin oxide films for transparent thermoelectric applications
,”
J. Materiomics
7
,
612
620
(
2021
).
38.
M.
Nistor
,
J.
Perrière
,
C.
Hebert
, and
W.
Seiler
, “
Nanocomposite indium tin oxide thin films: Formation induced by a large oxygen deficiency and properties
,”
J. Phys.: Condens. Matter.
22
,
045006
(
2010
).
39.
J.
Perriere
,
C.
Hebert
,
A.
Petitmangin
,
X.
Portier
,
W.
Seiler
, and
M.
Nistor
, “
Formation of metallic nanoclusters in oxyygen deficient indium tin oxide films
,”
J. Appl. Phys.
109
,
123704
(
2011
).
40.
E.
Millon
,
M.
Nistor
,
C.
Hebert
,
Y.
Davila
, and
J.
Perrière
, “
Phase separation in nanocomposite indium tin oxide thin films grown at room temperature: On the role of oxygen deficiency
,”
J. Mater. Chem.
22
,
12179
12185
(
2012
).
41.
K. A.
Bogle
,
V.
Anbusathaiah
,
M.
Arredondo
,
J.-Y.
Lin
,
Y.-H.
Chu
,
C.
O’Neill
,
J. M.
Gregg
,
M. R.
Castell
, and
V.
Nagarajan
, “
Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach
,”
ACS Nano
4
,
5139
5146
(
2010
).
42.
T.
Leichtweiss
,
R. A.
Henning
,
J.
Koettgen
,
R. M.
Schmidt
,
B.
Holländer
,
M.
Martin
,
M.
Wuttig
, and
J.
Janek
, “
Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity
,”
J. Mater. Chem. A
2
,
6631
426640
(
2014
).
43.
N.
Sbai
,
J.
Perrière
,
W.
Seiler
, and
E.
Millon
, “
Epitaxial growth of titanium oxide thin films on c-cut and alpha-cut sapphire substrates
,”
Surf. Sci.
601
,
5649
5658
(
2007
).
44.
C.
Cachoncinlle
,
E.
Millon
,
X.
Portier
,
C.
Hebert
,
J.
Perrière
, and
M.
Nistor
, “
Anisotropy of physical properties in pulsed laser-deposited ZnO films
,”
Appl. Phys. A
128
,
530
(
2022
).
45.
M.
Nistor
,
N. B.
Mandache
,
J.
Perrière
,
C.
Hebert
,
F.
Gherendi
, and
W.
Seiler
, “
Growth, structural and electrical properties of polar ZnO thin films on MgO substrates
,”
Thin Solid Films
519
,
3959
3964
(
2011
).
46.
A. F.
Ioffe
and
A. R.
Regel
, in
Progress in Semiconductors
, edited by
A. F.
Gibson
(
Wiley
,
New York
,
1960
), Vol. 4, p.
237
.
47.
R. S.
Ajimsha
,
A. K.
Das
,
M. P.
Joshi
, and
L. M.
Kukreja
, “
Quantum corrections to low temperature electrical conductivity in Dy doped ZnO thin films
,”
Thin Solid Films
589
,
521
525
(
2015
).
48.
A. K.
Das
,
R. S.
Ajimsha
, and
L. M.
Kukreja
, “
Thickness dependent metal–insulator transition and dimensional crossover for weak localization in Si0.02Zn0.98O thin films grown by pulsed laser deposition
,”
J. Appl. Phys.
115
,
193705
(
2014
).
49.
P. A.
Lee
and
T. V.
Ramakrishnan
, “
Disordered electronic systems
,”
Rev. Mod. Phys.
57
,
287
337
(
1985
).
50.
N. F.
Mott
,
Metal Insulator Transitions
(
Taylor and Francis
,
London
,
1974
).
51.
J.
Wang
,
G.
Wang
, and
J.
Zhao
, “
Non metal-metal transition in Znn (n = 2-20) clusters
,”
Phys. Rev. A
68
,
013201
(
2003
).
52.
Y.
Dai
,
D.
Dai
,
B.
Huang
, and
C.
Yan
, “
Size-dependent metal-non metal change of group IB and IIB metal clusters
,”
Eur. Phys. J. D
34
,
105
107
(
2005
).
53.
X.
Chen
,
L.
Liu
,
P. Y.
Yu
, and
S. S.
Mao
, “
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
,”
Science
331
,
746
750
(
2011
).
54.
F.
Qi
,
Z.
Yang
,
J.
Zhang
,
Y.
Wang
,
Q.
Qiu
, and
H.
Li
, “
Interfacial reaction-induced defect engineering: Enhanced visible and near-infrared absorption of wide band gap metal oxides with abundant oxygen vacancies
,”
ACS Appl. Mater. Interfaces
12
,
55417
55425
(
2020
).
55.
M. J.
Brett
and
R. R.
Parsons
, “
Optical properties of nonstoichiometric zinc oxide films deposited by bias sputtering
,”
J. Vac. Sci. Technol. A
4
,
423
427
(
1986
).
56.
N. K.
Divya
and
P. P.
Pradyumnan
, “
Photoluminescence quenching and photocatalytic enhancement of Pr-doped ZnO nanocrystals
,”
Bull. Mater. Sci.
40
,
1405
1413
(
2017
).
57.
J. E.
Medvedeva
,
E.
Caputa-Hatley
, and
I.
Zhuravlev
, “
Metallic networks and hydrogen compensation in highly nonstoichiometric amorphous In2O3−x,
,”
Phys.Rev. Mater.
6
,
025601
(
2022
).
58.
M. C.
Biesinger
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
, “
Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
,”
Appl. Surf. Sci.
257
,
887
898
(
2010
).
59.
Y.
Cao
,
P.
Qu
,
C.
Wang
,
J.
Zhou
,
M.
Li
,
X.
Yu
,
X.
Yu
,
J.
Pang
,
W.
Zhou
,
H.
Liu
, and
G.
Cuniberti
, “
Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector
,”
Adv. Opt. Mater.
10
,
2200816
(
2022
).
60.
P.
Wendel
,
S.
Periyannan
,
W.
Jaegermann
, and
A.
Klein
, “
Polarization dependence of ZnO Schottky barriers revealed by photoelectron spectroscopy
,”
Phys. Rev. Mater.
4
,
084604
(
2020
).
61.
G. E.
Hammer
and
R. M.
Shemenski
, “
The oxidation of zinc in air studied by XPS and AES
,”
J. Vac. Sci. Technol. A
1
,
1026
1028
(
1983
).
62.
C.
Wagner
and
A.
Joshi
, “
The Auger parameter, its utility and advantages: A review
,”
J. Electron Spectrosc. Relat. Phenom.
47
,
283
313
(
1988
).
63.
G.
Moretti
, “
The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy
,”
Surf. Sci.
618
,
3
11
(
2013
).
64.
J.
Williams
,
H.
Yoshikawa
,
S.
Ueda
,
Y.
Yamashita
,
K.
Kobayashi
,
Y.
Adachi
,
H.
Haneda
,
T.
Ohgaki
,
H.
Miyazaki
,
T.
Ishigaki
, and
N.
Ohashi
, “
Polarity-dependent photoemission spectra of wurtzite-type zinc oxide
,”
Appl. Phys. Lett.
100
,
051902
(
2012
).
65.
J. E.
Medvedeva
,
E.
Caputa-Hatley
, and
I.
Zhuravlev
, “
Metallic networks and hydrogen compensation in highly nonstoichiometric amorphous In2O3−x
,”
Phys. Rev. Mater.
6
,
025601
(
2022
).
66.
Y.
Cao
,
C.
Liu
,
T.
Yang
,
Y.
Zhao
,
Y.
Na
,
C.
Jiang
,
J.
Zhou
,
J.
Pang
,
H.
Liu
,
M. H.
Rummeli
,
W.
Zhou
, and
G.
Cuniberti
, “
Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells
,”
Sol. Energy Mater. Sol. Cells
246
,
111926
(
2022
).
67.
G. W.
Mattson
,
K. T.
Vogt
,
J. F.
Wager
, and
M. W.
Graham
, “
Hydrogen incorporation into amorphous indium gallium zinc oxide thin-film transistors
,”
J. Appl. Phys.
131
,
105701
(
2022
).
68.
J.
Pang
,
Y.
Wang
,
X.
Yang
,
L.
Zhang
,
Y.
Li
,
Y.
Zhang
,
J.
Yang
,
F.
Yang
,
X.
Wang
,
G.
Cuniberti
,
H.
Liu
, and
M. H.
Rummeli
, “
A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics
,”
Mater. Adv.
3
,
1497
1505
(
2022
).
69.
X.
Wang
and
A.
Dodabalapur
, “
Interface roughness and interface roughness scattering in amorphous oxide thin-film transistors
,”
J. Appl. Phys.
130
,
145302
(
2021
).
70.
S.
Zhang
,
J.
Pang
,
Q.
Cheng
,
F.
Yang
,
Y.
Chen
,
Y.
Liu
,
Y.
Li
,
T.
Gemming
,
X.
Liu
,
B.
Ibarlucea
,
J.
Yang
,
H.
Liu
,
W.
Zhou
,
G.
Cuniberti
, and
M. H.
Rummeli
, “
High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy
,”
InfoMat
3
,
1455
1469
(
2021
).
71.
Y.
Cao
,
C.
Liu
,
J.
Jiang
,
X.
Zhu
,
J.
Zhou
,
J.
Ni
,
J.
Zhang
,
J.
Pang
,
M. H.
Rummeli
,
W.
Zhou
,
H.
Liu
, and
G.
Cuniberti
, “
Theoretical insight into high-efficiency triple-junction tandem solar cells via the band engineering of antimony chalcogenides
,”
Sol. RRL
5
,
2000800
(
2021
).
72.
Y.
Wang
,
Y.
Zhang
,
Q.
Cheng
,
J.
Pang
,
Y.
Chu
,
H.
Ji
,
J.
Gao
,
Y.
Han
,
L.
Han
,
H.
Liu
, and
Y.
Zhang
, “
Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors
,”
Appl. Mater. Today
25
,
101176
(
2021
).
73.
I.
Maslyanitsyn
,
I.
Hayrullina
,
V.
Shigorin
,
V.
Voronov
,
I.
Nagovitsyn
,
V.
Savranskii
,
N.
Novikov
,
A.
Lobanov
, and
G.
Chudinova
, “
Microcrystal ordering and second-order optical susceptibilities of zinc oxide films
,”
J. Appl. Phys.
131
,
053105
(
2022
).
74.
J.
Zhou
,
D.
Meng
,
T.
Yang
,
X.
Zhang
,
Z.
Tang
,
Y.
Cao
,
J.
Ni
,
J.
Zhang
,
Z.
Hu
, and
J.
Pang
, “
Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications
,”
Appl. Surf. Sci.
591
,
153169
(
2022
).
75.
H.
Ta
,
L.
Zhao
,
D.
Pohl
,
J.
Pang
,
B.
Trzebicka
,
B.
Rellinghaus
,
D.
Pribat
,
T.
Gemming
,
Z.
Liu
,
A.
Bachmatiuk
, and
M.
Rummeli
, “
Graphene-Like ZnO: A mini review
,”
Crystals
6
,
100
(
2016
).
You do not currently have access to this content.