Irradiation creep is known to be an important process for structural materials in nuclear environments, potentially leading to creep failure at temperatures where thermal creep is generally negligible. While there is a great deal of data for irradiation creep in steels and zirconium alloys in light water reactor conditions, much less is known for first wall materials under fusion energy conditions. Lacking suitable fusion neutron sources for detailed experimentation, modeling, and simulation can help bridge the dose-rate and spectral-effects gap and produce quantifiable expectations for creep deformation of first wall materials under standard fusion conditions. In this paper, we develop a comprehensive model for irradiation creep created from merging a crystal plasticity representation of the dislocation microstructure and a defect evolution simulator that accounts for the entire cluster dimensionality space. Both approaches are linked by way of a climb velocity that captures dislocation-biased defect absorption and a dislocation strengthening term that reflects the accumulation of defect clusters in the system. We carry out our study in Fe under first wall fusion reactor conditions, characterized by a fusion neutron spectrum with average recoil energies of 20 keV and a damage dose rate of 3×107 dpa/s at temperatures between 300 and 800 K.

1.
V.
Fidleris
, “
The irradiation creep and growth phenomena
,”
J. Nucl. Mater.
159
,
22
42
(
1988
).
2.
Chapter 11-Irradiation Creep, edited by R. Klueh and D. Harries (ASTM International, West Conshohocken, 2001), pp. 113–121.
3.
G. S.
Was
,
Irradiation Creep and Growth
(
Springer
,
New York
,
2017
), pp. 735–791.
4.
F.
Nichols
, “
Theory of the creep of zircaloy during neutron irradiation
,”
J. Nucl. Mater.
30
,
249
270
(
1969
).
5.
D. G.
Franklin
and
R. B.
Adamson
, “
Implications of zircaloy creep and growth to light water reactor performance
,”
J. Nucl. Mater.
159
,
12
21
(
1988
).
6.
F.
Garner
and
M.
Toloczko
, “
Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems
,”
J. Nucl. Mater.
251
,
252
261
(
1997
).
7.
K. L.
Murty
, “
Creep studies for zircaloy life prediction in water reactors
,”
JOM
51
,
32
39
(
1999
).
8.
J.
Moon
,
P.
Cantonwine
,
K. R.
Anderson
,
S.
Karthikeyan
, and
M.
Mills
, “
Characterization and modeling of creep mechanisms in zircaloy-4
,”
J. Nucl. Mater.
353
,
177
189
(
2006
).
9.
H. J.
Ryu
,
Y. S.
Kim
, and
A.
Yacout
, “
Thermal creep modeling of HT9 steel for fast reactor applications
,”
J. Nucl. Mater.
409
,
207
213
(
2011
).
10.
G. S.
Was
,
Fundamentals of Radiation Materials Science: Metals and Alloys
(
Springer
,
2016
).
11.
C. H.
Woo
, “
Irradiation creep due to SIPA-induced growth
,”
Philos. Mag. A
42
,
551
558
(
1980
).
12.
S.
Dudarev
and
P.-W.
Ma
, “
Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals
,”
Phys. Rev. Mater.
2
,
033602
(
2018
).
13.
P.
Derlet
and
S.
Dudarev
, “
Microscopic structure of a heavily irradiated material
,”
Phys. Rev. Mater.
4
,
023605
(
2020
).
14.
J.
Matthews
and
M.
Finnis
, “
Irradiation creep models? An overview
,”
J. Nucl. Mater.
159
,
257
285
(
1988
).
15.
W.
Wolfer
and
M.
Ashkin
, “
Stress-induced diffusion of point defects to spherical sinks
,”
J. Appl. Phys.
46
,
547
557
(
1975
).
16.
W.
Wolfer
,
L.
Mansur
, and
J.
Sprague
, “Theory of swelling and irradiation creep,” Technical Report, Wisconsin University, Madison, USA, Department of Nuclear Engineering, Oak Ridge, 1977.
17.
P.
Dederichs
and
K.
Schroeder
, “
Anisotropic diffusion in stress fields
,”
Phys. Rev. B
17
,
2524
(
1978
).
18.
A. F.
Rowcliffe
, “
Neutron irradiation facilities for fission and fusion reactor materials studies
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
249
,
26
33
(
1986
).
19.
S.
Cierjacks
,
K.
Ehrlich
,
E.
Cheng
,
H.
Conrads
, and
H.
Ullmaier
, “
High-lntensity fast neutron sources and neutron fields for fusion technology and fusion materials research
,”
Nucl. Sci. Eng.
106
,
99
113
(
1990
).
20.
P. R.
Huebotter
, “Effects of metal swelling and creep on fast reactor design and performance,” Technical Report, Argonne National Laboratory, Illinois, 1972.
21.
W.
Wolfer
,
J.
Foster
, and
F.
Garner
, “
The interrelationship between swelling and irradiation creep
,”
Nucl. Technol.
16
,
55
63
(
1972
).
22.
D.
Mosedale
,
G.
Lewthwaite
, and
I.
Ramsay
, “Irradiation creep of fast reactor materials,” in Physical Metallurgy of Reactor Fuel Elements
, edited by J. E. Harris and E. C. Sykes (Metals Society, Londong, 1975), p. 132–135; available at
https://inis.iaea.org/search/search.aspx?orig_q=RN:8281082.
23.
K.
Ehrlich
, “
Irradiation creep and interrelation with swelling in austenitic stainless steels
,”
J. Nucl. Mater.
100
,
149
166
(
1981
).
24.
F.
Garner
and
D.
Gelles
, “
Irradiation creep mechanisms: An experimental perspective
,”
J. Nucl. Mater.
159
,
286
309
(
1988
).
25.
A.
Kohyama
,
Y.
Kohno
,
K.
Asakura
,
M.
Yoshino
,
C.
Namba
, and
C.
Eiholzer
, “
Irradiation creep of low-activation ferritic steels in FFTF/MOTA
,”
J. Nucl. Mater.
212
,
751
754
(
1994
).
26.
M.
Toloczko
,
F.
Garner
, and
C.
Eiholzer
, “
Irradiation creep of various ferritic alloys irradiated at 400 °C in the PFR and FFTF reactors
,”
J. Nucl. Mater.
258
,
1163
1166
(
1998
).
27.
F.
Garner
,
M.
Toloczko
, and
M.
Grossbeck
, “
The dependence of irradiation creep in austenitic alloys on displacement rate and helium to dpa ratio
,”
J. Nucl. Mater.
258
,
1718
1724
(
1998
).
28.
C.
Woo
, “
Irradiation creep due to elastodiffusion
,”
J. Nucl. Mater.
120
,
55
64
(
1984
).
29.
P.
Turner
and
C.
Tomé
, “
Self-consistent modeling of visco-elastic polycrystals: Application to irradiation creep and growth
,”
J. Mech. Phys. Solids
41
,
1191
1211
(
1993
).
30.
A.
Patra
and
D. L.
McDowell
, “
Crystal plasticity-based constitutive modelling of irradiated bcc structures
,”
Philos. Mag.
92
,
861
887
(
2012
).
31.
W.
Wen
,
A.
Kohnert
,
M. A.
Kumar
,
L.
Capolungo
, and
C. N.
Tomé
, “
Mechanism-based modeling of thermal and irradiation creep behavior: An application to ferritic/martensitic HT9 steel
,”
Int. J. Plast.
126
,
102633
(
2020
).
32.
J.
Marian
and
V. V.
Bulatov
, “
Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation
,”
J. Nucl. Mater.
415
,
84
95
(
2011
).
33.
C.-H.
Huang
,
M. R.
Gilbert
, and
J.
Marian
, “
Simulating irradiation hardening in tungsten under fast neutron irradiation including re production by transmutation
,”
J. Nucl. Mater.
499
,
204
215
(
2018
).
34.
Q.
Yu
,
M. J.
Simmonds
,
R.
Doerner
,
G. R.
Tynan
,
L.
Yang
,
B. D.
Wirth
, and
J.
Marian
, “
Understanding hydrogen retention in damaged tungsten using experimentally-guided models of complex multispecies evolution
,”
Nucl. Fusion
60
,
096003
(
2020
).
35.
D.
Cereceda
,
M.
Diehl
,
F.
Roters
,
D.
Raabe
,
J. M.
Perlado
, and
J.
Marian
, “
Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations
,”
Int. J. Plast.
78
,
242
265
(
2016
).
36.
G.
Po
,
Y.
Cui
,
D.
Rivera
,
D.
Cereceda
,
T. D.
Swinburne
,
J.
Marian
, and
N.
Ghoniem
, “
A phenomenological dislocation mobility law for bcc metals
,”
Acta Mater.
119
,
123
135
(
2016
).
37.
Q.
Yu
,
S.
Chatterjee
,
K. J.
Roche
,
G.
Po
, and
J.
Marian
, “
Coupling crystal plasticity and stochastic cluster dynamics models of irradiation damage in tungsten
,”
Modell. Simul. Mater. Sci. Eng.
29
,
055021
(
2021
).
38.
E.
Lee
and
D.
Liu
, “
Finite-strain elastic-plastic theory with application to plane-wave analysis
,”
J. Appl. Phys.
38
,
19
27
(
1967
).
39.
M.
Geers
,
M.
Cottura
,
B.
Appolaire
,
E. P.
Busso
,
S.
Forest
, and
A.
Villani
, “
Coupled glide-climb diffusion-enhanced crystal plasticity
,”
J. Mech. Phys. Solids
70
,
136
153
(
2014
).
40.
S. D.
Mesarovic
, “
Dislocation creep: Climb and glide in the lattice continuum
,”
Crystals
7
,
243
(
2017
).
41.
S.
Yuan
,
M.
Huang
,
Y.
Zhu
, and
Z.
Li
, “
A dislocation climb/glide coupled crystal plasticity constitutive model and its finite element implementation
,”
Mech. Mater.
118
,
44
61
(
2018
).
42.
Or, more precisely, into pure screw and non-screw dislocation subpopulations.
43.
A.
Stukowski
,
D.
Cereceda
,
T. D.
Swinburne
, and
J.
Marian
, “
Thermally-activated non-schmid glide of screw dislocations in w using atomistically-informed kinetic Monte Carlo simulations
,”
Int. J. Plast.
65
,
108
130
(
2015
).
44.
Although present in bcc materials,35,44 here we ignore non-Schmid effects.
45.
A.
Arsenlis
and
D. M.
Parks
, “
Modeling the evolution of crystallographic dislocation density in crystal plasticity
,”
J. Mech. Phys. Solids
50
,
1979
2009
(
2002
).
46.
U. F.
Kocks
,
Dislocations and Properties of Real Materials: Proceedings of the Conference to Celebrate the Fiftieth Anniversary of the Concept of Dislocation in Crystals
(
Maney Pub
,
1985
).
47.
A. D.
Rollett
and
U.
Kocks
, “A review of the stages of work hardening,” in Solid State Phenomena (Trans Tech Publications, 1993), Vol. 35, pp. 1–18.
48.
L. K.
Mansur
, “
Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects
,”
Philos. Mag. A
39
,
497
506
(
1979
).
49.
P.
Franciosi
, “
The concepts of latent hardening and strain hardening in metallic single crystals
,”
Acta Metall.
33
,
1601
1612
(
1985
).
50.
P.
Franciosi
,
L.
Le
,
G.
Monnet
,
C.
Kahloun
, and
M.-H.
Chavanne
, “
Investigation of slip system activity in iron at room temperature by SEM and AFM in-situ tensile and compression tests of iron single crystals
,”
Int. J. Plast.
65
,
226
249
(
2015
).
51.
J.
Marian
and
T. L.
Hoang
, “
Modeling fast neutron irradiation damage accumulation in tungsten
,”
J. Nucl. Mater.
429
,
293
297
(
2012
).
52.
B.
Masters
, “
Dislocation loops in irradiated iron
,”
Nature
200
,
254
(
1963
).
53.
D.
Gelles
, “
Microstructural examination of neutron-irradiated simple ferritic alloys
,”
J. Nucl. Mater.
108
,
515
526
(
1982
).
54.
A.
Nicol
,
M.
Jenkins
, and
M.
Kirk
, “
Matrix damage in iron
,”
MRS Online Proc. Lib.
650
,
R1.3
(
2000
).
55.
J.
Marian
,
B. D.
Wirth
, and
J. M.
Perlado
, “
Mechanism of formation and growth of <100> interstitial loops in ferritic materials
,”
Phys. Rev. Lett.
88
,
255507
(
2002
).
56.
F.
Kroupa
and
P. B.
Hirsch
, “
Elastic interaction between prismatic dislocation loops and straight dislocations
,”
Discuss. Faraday Soc.
38
,
49
55
(
1964
).
57.
X.
Xiao
and
L.
Yu
, “
A hardening model for the cross-sectional nanoindentation of ion-irradiated materials
,”
J. Nucl. Mater.
511
,
220
230
(
2018
).
58.
T.
Hwang
,
M.
Fukuda
,
S.
Nogami
,
A.
Hasegawa
,
H.
Usami
,
K.
Yabuuchi
,
K.
Ozawa
, and
H.
Tanigawa
, “
Effect of self-ion irradiation on hardening and microstructure of tungsten
,”
Nucl. Mater. Energy
9
,
430
435
(
2016
).
59.
R.
Bullough
and
M.
Hayns
, “
Irradiation-creep due to point defect absorption
,”
J. Nucl. Mater.
57
,
348
352
(
1975
).
60.
W.
Wolfer
and
M.
Ashkin
, “
Diffusion of vacancies and interstitials to edge dislocations
,”
J. Appl. Phys.
47
,
791
800
(
1976
).
61.
W.
Wolfer
, “
Correlation of radiation creep theory with experimental evidence
,”
J. Nucl. Mater.
90
,
175
192
(
1980
).
62.
E.
Savino
and
C.
Tomé
, “
Irradiation creep by stress-induced preferential attraction due to anisotropic diffusion (SIPA-AD)
,”
J. Nucl. Mater.
108-109
,
405
416
(
1982
).
63.
E.
Kuramoto
, “
Interaction between an edge dislocation and an interstitial atom under stress? fundamental process in sipa-creep?
,”
J. Nucl. Mater.
122
,
422
426
(
1984
).
64.
N.
Dowling
,
Mechanical Behavior of Materials
(
Prentice-Hall
,
Englewood Cliffs
,
1993
).
65.
M. R.
Gilbert
,
S. L.
Dudarev
,
D.
Nguyen-Manh
,
S.
Zheng
,
L. W.
Packer
, and
J. C.
Sublet
, “
Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials
,”
J. Nucl. Mater.
442
,
S755
S760
(
2013
).
66.
M. R.
Gilbert
,
J.
Marian
, and
J.-C.
Sublet
, “
Energy spectra of primary knock-on atoms under neutron irradiation
,”
J. Nucl. Mater.
467
,
121
134
(
2015
).
67.
L.
Malerba
, “
Molecular dynamics simulation of displacement cascades in Î-fe: A critical review
,”
J. Nucl. Mater.
351
,
28
38
(
2006
).
68.
However, time is advanced regardless of the value of NFP.
69.
S.
Narayanan
,
D. L.
McDowell
, and
T.
Zhu
, “
Crystal plasticity model for bcc iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation
,”
J. Mech. Phys. Solids
65
,
54
68
(
2014
).
70.
L.
Tan
,
L.
Snead
, and
Y.
Katoh
, “
Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors
,”
J. Nucl. Mater.
478
,
42
49
(
2016
).
71.
N.
Budylkin
,
E.
Mironova
,
V.
Chernov
,
V.
Krasnoselov
,
S.
Porollo
, and
F.
Garner
, “
Neutron-induced swelling and embrittlement of pure iron and pure nickel irradiated in the BN-350 and BOR-60 fast reactors
,”
J. Nucl. Mater.
375
,
359
364
(
2008
).
72.
E.
Little
,
R.
Bullough
, and
M.
Wood
, “
On the swelling resistance of ferritic steel
,”
Proc. R. Soc. London, Ser. A
372
,
565
579
(
1980
).
73.
N. I.
Budylkin
,
E. G.
Mironova
,
V.
Chernov
,
V.
Krasnoselov
,
S.
Porollo
, and
F. A.
Garner
, “
Neutron-induced swelling and embrittlement of pure iron and pure nickel irradiated in the BN-350 and BOR-60 fast reactors
,”
J. Nucl. Mater.
375
,
359
364
(
2008
).
74.
Although arbitrary, we define positive climb as that contributing to positive swelling, i.e., volumetric expansion.
75.
J.
Chen
,
P.
Jung
,
M. A.
Pouchon
,
T.
Rebac
, and
W.
Hoffelner
, “
Irradiation creep and precipitation in a ferritic ODS steel under helium implantation
,”
J. Nucl. Mater.
373
,
22
27
(
2008
).
76.
J.
Chen
and
W.
Hoffelner
, “
Irradiation creep of oxide dispersion strengthened (ODS) steels for advanced nuclear applications
,”
J. Nucl. Mater.
392
,
360
363
(
2009
).
77.
M.
Ando
,
T.
Nozawa
,
T.
Hirose
,
H.
Tanigawa
,
E.
Wakai
,
R. E.
Stoller
, and
J.
Myers
, “
Effect of helium on irradiation creep behavior of B-doped F82H irradiated in HFIR
,”
Fusion Sci. Technol.
68
,
648
651
(
2015
).
78.
K.
Morishita
,
R.
Sugano
, and
B.
Wirth
, “
MD and KMC modeling of the growth and shrinkage mechanisms of helium–vacancy clusters in Fe
,”
J. Nucl. Mater.
323
,
243
250
(
2003
).
79.
C.-C.
Fu
and
F.
Willaime
, “
Ab initio study of helium in α- Fe: Dissolution, migration, and clustering with vacancies
,”
Phys. Rev. B
72
,
064117
(
2005
).
80.
V.
Borodin
and
P.
Vladimirov
, “
Diffusion coefficients and thermal stability of small helium–vacancy clusters in iron
,”
J. Nucl. Mater.
362
,
161
166
(
2007
).
81.
M.
Samaras
, “
Multiscale modelling: The role of helium in iron
,”
Mater. Today
12
,
46
53
(
2009
).
82.
H. L.
Heinisch
,
F.
Gao
, and
R. J.
Kurtz
, “
Atomic-scale modeling of interactions of helium, vacancies and helium–vacancy clusters with screw dislocations in alpha-iron
,”
Philos. Mag.
90
,
885
895
(
2010
).
83.
M.
Toloczko
,
F.
Garner
, and
C.
Eiholzer
, “
Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at 400 °C
,”
J. Nucl. Mater.
212
,
604
607
(
1994
).
84.
M. A.
Okuniewski
, “Irradiation-induced microstructural evolution and mechanical properties in iron with and without helium,” Ph.D. thesis (University of Illinois, Urbana-Champaign, 2008).
85.
Y.
Kupriiyanova
,
V.
Bryk
,
O.
Borodin
,
A.
Kalchenko
,
V.
Voyevodin
,
G.
Tolstolutskaya
, and
F.
Garner
, “
Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8%–12% Cr ferritic-martensitic steels
,”
J. Nucl. Mater.
468
,
264
273
(
2016
).
86.
E.
Opperman
,
J.
Straalsund
,
G.
Wire
, and
R.
Howell
, “
Proton simulation of irradiation-induced creep
,”
Nucl. Technol.
42
,
71
81
(
1979
).
87.
G.
Tolstolutskaya
,
V.
Ruzhytskiy
,
I.
Kopanets
,
S.
Karpov
,
V.
Bryk
,
V. N.
Voyevodin
, and
F. A.
Garner
, “
Displacement and helium-induced enhancement of hydrogen and deuterium retention in ion-irradiated 18Cr10NiTi stainless steel
,”
J. Nucl. Mater.
356
,
136
147
(
2006
).
88.
J.
Marian
,
T.
Hoang
,
M.
Fluss
, and
L. L.
Hsiung
, “
A review of helium–hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding
,”
J. Nucl. Mater.
462
,
409
421
(
2015
).
89.
E.
Savino
and
C.
Tomé
, “
Irradiation creep by stress-induced preferential attraction due to anisotropic diffusion (SIPA-AD)
,”
J. Nucl. Mater.
108
,
405
416
(
1982
).
90.
S.
Huang
and
J.
Marian
, “
Rates of diffusion controlled reactions for one-dimensionally-moving species in 3D space
,”
Philos. Mag.
99
,
2562
2583
(
2019
).
91.
N.
Ghoniem
,
J.
Matthews
, and
R.
Amodeo
, “
A dislocation model for creep in engineering materials
,”
Res Mech.
29
,
197
219
(
1990
).
92.
R.
Galimov
and
S.
Goryachev
, “
The sink strength of dislocation multipole and dislocation wall
,”
Phys. Status Solidi B
154
,
43
54
(
1989
).
93.
Z.
Rong
,
V.
Mohles
,
D. J.
Bacon
, and
Y. N.
Osetsky
, “
Dislocation dynamics modelling of dislocation–loop interactions in irradiated metals
,”
Philos. Mag.
85
,
171
188
(
2005
).
94.
J.
Gao
,
K.
Yabuuchi
, and
A.
Kimura
, “
Characterization of ordered dislocation loop raft in Fe3+ irradiated pure iron at 300  °C
,”
J. Nucl. Mater.
511
,
304
311
(
2018
).
95.
J. C.
Haley
,
S. A.
Briggs
,
P. D.
Edmondson
,
K.
Sridharan
,
S. G.
Roberts
,
S.
Lozano-Perez
, and
K. G.
Field
, “
Dislocation loop evolution during in-situ ion irradiation of model fecral alloys
,”
Acta Mater.
136
,
390
401
(
2017
).
96.
F. R. N.
Nabarro
, “
Dislocations in a simple cubic lattice
,”
Proc. Phys. Soc.
59
,
256
272
(
1947
).
You do not currently have access to this content.