We present the analytic form of the principal Hugoniot at all pressures. It is constructed by interpolating smoothly between three pressure (P) regimes. Specifically, (i) the low-P regime in which the Hugoniot is described by Us=C+BUp+AUp2, where Up and Us are particle and shock velocities, respectively, the values of C and B come from the experiment, and a small non-linearity (A102 s/km) is added to the otherwise common linear form Us=C+BUp to match the next regime; (ii) the intermediate-P regime where the Hugoniot is described by the quantum-statistical model of Kalitkin and Kuzmina, Us=c+bUp+aUp2, with the values of c, b, and a determined virtually for all Zs (Z being the atomic number); and (iii) the high-P regime in which the Hugoniot is described by the Debye–Hückel model developed by Johnson. We determine the analytic form of the Hugoniot in the high-P regime and match it with those in the other two regimes. We show that no additional free parameter is required for the construction of the Hugoniot at all P except the six mentioned above: C, B, c, b, a, and Z. Comparison of the new model to experimental and/or theoretical data on aluminum, iron, silicon, and lithium fluoride, the four materials for which such data exist to very high P, demonstrates excellent agreement. Our approach applies to both elemental substances and complex materials (compounds and alloys) and can be used to predict the analytic forms of the yet unknown Hugoniots as well as to validate experimental results and theoretical calculations. The new model can be adopted for the description of the principal Hugoniots of porous substances and can be generalized for radiation-dominated (strong) shocks.

1.
N. N.
Kalitkin
and
L. V.
Kuzmina
, “Wide-range characteristic thermodynamic curves,” in High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, edited by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Springer-Verlag, New York, 2004), p. 116.
2.
J. D.
Johnson
,
AIP Conf. Proc.
429
,
27
(
1998
).
3.
O. L.
Anderson
,
Equations of State of Solids for Geophysics and Ceramic Science
(
Oxford University Press
,
New York
,
1995
), pp. 19, 59.
4.
N.
Ozaki
et al.,
Sci. Rep.
6
,
26000
(
2016
).
5.
J. D.
Johnson
, “General features of Hugoniots,” LANL Preprint LA-13137-MS, 1996.
6.
J. D.
Johnson
, “General features of Hugoniots—II,” LANL preprint LA-13217-MS, 1997.
7.
J. D.
Johnson
,
Phys. Rev. E
59
,
3727
(
1999
).
8.
N. N.
Kalitkin
and
L. V.
Kuzmina
,
Sov. Phys. Solid State
13
,
1938
(
1972
).
9.
N. N.
Kalitkin
and
L. V.
Kuz’mina
,
Dokl. Phys.
43
,
276
(
1998
).
10.
N. N.
Kalitkin
and
L. V.
Kuzmina
,
Chem. Phys. Rep.
18
,
1913
(
2000
).
11.
N. N.
Kalitkin
,
L. V.
Kuzmina
, and
A. I.
Funtikov
,
Math. Model.
14
,
27
(
2002
).
12.
E. S.
Ivanchenko
,
N. N.
Kalitkin
, and
L. V.
Kuz’mina
,
Math. Mod. Comp. Simul.
1
,
383
(
2009
).
13.
14.
L. V.
Al’tshuler
,
N. N.
Kalitkin
,
L. V.
Kuz’mina
, and
B. S.
Chekin
,
Sov. Phys. JETP
45
,
167
(
1977
).
15.
J. C.
Pain
,
High Energy Density Phys.
3
,
204
(
2007
).
16.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Addison-Wesley Publishing Company
,
Reading, PA
,
1969
).
17.
See https://en.wikipedia.org/wiki/Ionization_energies_of_the_elements_(data_page) for Ionization energies of the elements (data).
18.
R. W.
Gómez
,
Eur. J. Phys.
40
,
015403
(
2019
).
19.
See https://pages.uoregon.edu/epmalab/UCB_htm for “A (More) Physically Based First Approximation for Electron Probe Quantification.”
20.
M. A.
Kadatskii
, “Quantum-statistical calculation of thermodynamic properties of simple substances and mixtures at high energy densities,” Ph.D. thesis (Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia, 2019).
21.
D. C.
Wallace
,
Phys. Rev. B
24
,
5607
(
1981
).
22.
A. S.
Vladimirov
et al.,
Sov. Phys. JETP Lett.
39
,
82
(
1984
).
23.
J. M.
Brown
,
J. N.
Fritz
, and
R. S.
Hixson
,
J. Appl. Phys.
88
,
5496
(
2000
).
24.
S. X.
Hu
et al.,
Phys. Rev. B
94
,
094109
(
2016
).
25.
M. N.
Pavlovskii
,
Sov. Phys. Solid State
9
,
2514
(
1968
).
26.
K. P.
Driver
and
B.
Militzer
,
Phys. Rev. E
95
,
043205
(
2017
).
27.
D. G.
Hicks
et al.,
Phys. Rev. Lett.
91
,
035502
(
2003
).
28.
J.
Clérouin
,
Y.
Laudernet
,
V.
Recoules
, and
S.
Mazevet
,
Phys. Rev. B
72
,
155122
(
2005
).
29.
L. V.
Al’tshuler
,
M. N.
Pavlovsky
,
L. V.
Kuleshova
, and
G. V.
Simakov
,
Sov. Phys. Solid State
5
,
203
(
1963
).
30.
S. B.
Kormer
et al.,
Sov. Phys. JETP
20
,
811
(
1965
).
31.
M.
Das
and
S. V. G.
Menon
,
Phys. Rev. B
79
,
045126
(
2009
).
32.
L. V.
Al’tshuler
,
A. A.
Bakanova
, and
R. F.
Trunin
,
Sov. Phys. JETP
15
,
65
(
1962
); R. F. Trunin, Shock Compression of Condensed Materials (Cambridge University Press, 1998); and references therein.
You do not currently have access to this content.