The highly porous three-dimensional (3D) graphene is a promising solid sorbent for carbon capture and storage. However, generally, the selectivity of a carbon-based sorbent for CO2 in a gas mixture (such as the post-combustion flue gas in a power plant) is only moderate (10–20), which limits its applications. Here, using the Grand Canonical Monte Carlo (GCMC) simulation, we investigate a new type of nitrogen doping (N-doping) in graphene that contains cationic nitrogen sites for CO2 adsorption. We found that due to the favorable electrostatic interaction both CO2 adsorption and selectivity are improved substantially for the porous 3D graphene with the cationic N-doping and are at least an order of magnitude higher than those for the ones without N-doping or with neutral N-doping (such as graphitic, pyridinic, and pyrrolic ones). Our results highlight the possibility for this modified porous 3D graphene to possess both high selectivity and large adsorption for carbon capture, enhancing its commercial viability.

1.
M. E.
Mann
,
R. S.
Bradley
, and
M. K.
Hughes
, “
Global-scale temperature patterns and climate forcing over the past six centuries
,”
Nature
392
,
779
787
(
1998
).
2.
A. B.
Rao
and
E. S.
Rubin
, “
A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control
,”
Environ. Sci. Technol.
36
,
4467
4475
(
2002
).
3.
L. M.
Robeson
, “
The upper bound revisited
,”
J. Membr. Sci.
320
,
390
400
(
2008
).
4.
B.
Luan
,
B.
Elmegreen
,
M. A.
Kuroda
,
Z.
Gu
,
G.
Lin
, and
S.
Zeng
, “
Crown nanopores in graphene for CO2 capture and filtration
,”
ACS Nano
16
,
6274
6281
(
2022
).
5.
C. A.
Trickett
,
A.
Helal
,
B. A.
Al-Maythalony
,
Z. H.
Yamani
,
K. E.
Cordova
, and
O. M.
Yaghi
, “
The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion
,”
Nat. Rev. Mater.
2
,
17045
(
2017
).
6.
J. A.
Mason
,
K.
Sumida
,
Z. R.
Herm
,
R.
Krishna
, and
J. R.
Long
, “
Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
,”
Energy Environ. Sci.
4
,
3030
3040
(
2011
).
7.
Y.
Zeng
,
R.
Zou
, and
Y.
Zhao
, “
Covalent organic frameworks for CO2 capture
,”
Adv. Mater.
28
,
2855
2873
(
2016
).
8.
X.
Feng
,
X.
Ding
, and
D.
Jiang
, “
Covalent organic frameworks
,”
Chem. Soc. Rev.
41
,
6010
6022
(
2012
).
9.
O.
Cheung
and
N.
Hedin
, “
Zeolites and related sorbents with narrow pores for CO2 separation from flue gas
,”
RSC Adv.
4
,
14480
14494
(
2014
).
10.
M. R.
Hudson
,
W. L.
Queen
,
J. A.
Mason
,
D. W.
Fickel
,
R. F.
Lobo
, and
C. M.
Brown
, “
Unconventional, highly selective CO2 adsorption in zeolite SSZ-13
,”
J. Am. Chem. Soc.
134
,
1970
1973
(
2012
).
11.
W.
Lu
,
D.
Yuan
,
J.
Sculley
,
D.
Zhao
,
R.
Krishna
, and
H.-C.
Zhou
, “
Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure
,”
J. Am. Chem. Soc.
133
,
18126
18129
(
2011
).
12.
W.
Lu
,
J. P.
Sculley
,
D.
Yuan
,
R.
Krishna
,
Z.
Wei
, and
H.-C.
Zhou
, “
Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas
,”
Angew. Chem. Int. Ed.
124
,
7598
7602
(
2012
).
13.
A. A.
Abd
,
M. R.
Othman
, and
J.
Kim
, “
A review on application of activated carbons for carbon dioxide capture: Present performance, preparation, and surface modification for further improvement
,”
Environ. Sci. Pollut. Res.
28
,
43329
43364
(
2021
).
14.
R. V.
Siriwardane
,
M.-S.
Shen
,
E. P.
Fisher
, and
J. A.
Poston
, “
Adsorption of CO2 on molecular sieves and activated carbon
,”
Energy Fuels
15
,
279
284
(
2001
).
15.
N.
Giri
,
M. G.
Del Pópolo
,
G.
Melaugh
,
R. L.
Greenaway
,
K.
Rätzke
,
T.
Koschine
,
L.
Pison
,
M. F. C.
Gomes
,
A. I.
Cooper
, and
S. L.
James
, “
Liquids with permanent porosity
,”
Nature
527
,
216
220
(
2015
).
16.
J.
Zhang
,
S.-H.
Chai
,
Z.-A.
Qiao
,
S. M.
Mahurin
,
J.
Chen
,
Y.
Fang
,
S.
Wan
,
K.
Nelson
,
P.
Zhang
, and
S.
Dai
, “
Porous liquids: A promising class of media for gas separation
,”
Angew. Chem. Int. Ed.
127
,
946
950
(
2015
).
17.
S.
Chowdhury
and
R.
Balasubramanian
, “
Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture
,”
Ind. Eng. Chem.
55
,
7906
7916
(
2016
).
18.
X.
Ren
,
H.
Li
,
J.
Chen
,
L.
Wei
,
A.
Modak
,
H.
Yang
, and
Q.
Yang
, “
N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture
,”
Carbon
114
,
473
481
(
2017
).
19.
S.
Wang
,
Z.
Zhang
,
S.
Dai
, and
D.-E.
Jiang
, “
Insights into CO2/N2 selectivity in porous carbons from deep learning
,”
ACS Mater. Lett.
1
,
558
563
(
2019
).
20.
X.
Li
,
H.
Wang
,
J. T.
Robinson
,
H.
Sanchez
,
G.
Diankov
, and
H.
Dai
, “
Simultaneous nitrogen doping and reduction of graphene oxide
,”
J. Am. Chem. Soc.
131
,
15939
15944
(
2009
).
21.
G. V.
Bianco
,
A.
Sacchetti
,
M.
Grande
,
A.
D’Orazio
,
A.
Milella
, and
G.
Bruno
, “
Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions
,”
Sci. Rep.
12
,
8703
(
2022
).
22.
S.
Chae
,
G.
Panomsuwan
,
M. A.
Bratescu
,
K.
Teshima
, and
N.
Saito
, “
p-type doping of graphene with cationic nitrogen
,”
ACS Appl. Nano Mater.
2
,
1350
1355
(
2019
).
23.
H.-S.
Lin
,
T.
Kaneko
,
S.
Ishikawa
,
I.
Jeon
,
S.
Chae
,
T.
Yana
,
N.
Saito
, and
Y.
Matsuo
, “
Cationic nitrogen-doped graphene as a p-type modifier for high-performance PEDOT: PSS hole transporters in organic solar cells
,”
Jpn. J. Appl. Phys.
60
,
070902
(
2021
).
24.
K.
Xu
,
Y.
Fu
,
Y.
Zhou
,
F.
Hennersdorf
,
P.
Machata
,
I.
Vincon
,
J. J.
Weigand
,
A. A.
Popov
,
R.
Berger
, and
X.
Feng
, “
Cationic nitrogen-doped helical nanographenes
,”
Angew. Chem. Int. Ed.
56
,
15876
15881
(
2017
).
25.
T. M.
Byrne
,
X.
Gu
,
P.
Hou
,
F. S.
Cannon
,
N. R.
Brown
, and
C.
Nieto-Delgado
, “
Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration
,”
Carbon
73
,
1
12
(
2014
).
26.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
,
81
101
(
2016
).
27.
V.
Efeovbokhan
,
E.
Alagbe
,
B.
Odika
,
R.
Babalola
,
T.
Oladimeji
,
O.
Abatan
, and
E.
Yusuf
, “Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators,” in Journal of Physics: Conference Series (IOP Publishing, 2019), Vol. 1378, p. 032035.
28.
A. K.
Rappé
,
C. J.
Casewit
,
K.
Colwell
,
W. A.
Goddard III
, and
W. M.
Skiff
, “
Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
29.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
30.
K. V.
Kumar
,
K.
Preuss
,
L.
Lu
,
Z. X.
Guo
, and
M. M.
Titirici
, “
Effect of nitrogen doping on the CO2 adsorption behavior in nanoporous carbon structures: A molecular simulation study
,”
J. Phys. Chem. C
119
,
22310
22321
(
2015
).
31.
S.
Yang
,
W.
Li
,
C.
Ye
,
G.
Wang
,
H.
Tian
,
C.
Zhu
,
P.
He
,
G.
Ding
,
X.
Xie
,
Y.
Liu
, and
Y.
Lifshitz
, “
C3N–A2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties
,”
Adv. Mater.
29
,
1605625
(
2017
).
32.
T.
Vlugt
,
E.
García-Pérez
,
D.
Dubbeldam
,
S.
Ban
, and
S.
Calero
, “
Computing the heat of adsorption using molecular simulations: The effect of strong coulombic interactions
,”
J. Chem. Theory Comput.
4
,
1107
1118
(
2008
).
33.
D.
Britt
,
H.
Furukawa
,
B.
Wang
,
T. G.
Glover
, and
O. M.
Yaghi
, “
Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
20637
20640
(
2009
).
34.
W.
Lou
,
J.
Li
,
W.
Sun
,
Y.
Hu
,
L.
Wang
,
R. F.
Neumann
,
M.
Steiner
,
Z.
Gu
,
B.
Luan
, and
Y.
Zhang
, “
Screening hoffman-type metal organic frameworks for efficient C2H2/CO2 separation
,”
Chem. Eng. J.
452
,
139296
(
2022
).

Supplementary Material

You do not currently have access to this content.