Starting from a degenerate Bose gas in a hybrid trap combining a magnetic quadrupole trap and an attractive optical trap resulting from a focused laser beam, we demonstrate the efficient loading of this quantum gas into a shell-shaped trap. The shell trap is purely magnetic and relies on adiabatic potentials for atoms in an inhomogeneous magnetic field dressed by a radiofrequency (rf) field. We show that direct rf evaporation in the hybrid trap enables an efficient and simple preparation of the cold sample, well adapted to the subsequent loading procedure. The transfer into the shell trap is adiabatic and limits the final excitation of the center-of-mass motion to below 2  μm.

1.
A. D.
Cronin
,
J.
Schmiedmayer
, and
D. E.
Pritchard
, “
Optics and interferometry with atoms and molecules
,”
Rev. Mod. Phys.
81
,
1051
1129
(
2009
).
2.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
,
637
701
(
2015
).
3.
I.
Bloch
,
J.
Dalibard
, and
S.
Nascimbène
, “
Quantum simulations with ultracold quantum gases
,”
Nat. Phys.
8
,
267
276
(
2012
).
4.
L.
Amico
,
G.
Birkl
,
M. G.
Boshier
, and
L.-C.
Kwek
, “
Special issue: Focus on atomtronics-enabled quantum technologies
,”
New J. Phys.
19
,
020201
(
2017
).
5.
A.
Browaeys
and
T.
Lahaye
, “
Many-body physics with individually controlled Rydberg atoms
,”
Nat. Phys.
16
,
132
142
(
2020
).
6.
W.
Ketterle
,
D. S.
Durfee
, and
D. M.
Stamper-Kurn
, “Making, probing and understanding Bose-Einstein condensates,” in Proceedings of the International School of Physics “Enrico Fermi,” Course CXL, edited by M. Inguscio, S. Stringari, and C. E. Wieman (IOS Press Ohmsha, 1999), pp. 67–176.
7.
R.
Grimm
,
M.
Weidemüller
, and
Y. B.
Ovchinnikov
, “
Optical dipole traps for neutral atoms
,”
Adv. At. Mol. Opt. Phys.
42
,
95
170
(
2000
).
8.
A. L.
Gaunt
,
T. F.
Schmidutz
,
I.
Gotlibovych
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Bose–Einstein condensation of atoms in a uniform potential
,”
Phys. Rev. Lett.
110
,
200406
(
2013
).
9.
I.
Bloch
, “
Ultracold quantum gases in optical lattices
,”
Nat. Phys.
1
,
23
(
2005
).
10.
T.
Schumm
,
S.
Hofferberth
,
L. M.
Andersson
,
S.
Wildermuth
,
S.
Groth
,
I.
Bar-Joseph
,
J.
Schmiedmayer
, and
P.
Krüger
, “
Matter wave interferometry in a double well on an atom chip
,”
Nat. Phys.
1
,
57
(
2005
).
11.
C.
Ryu
,
M. F.
Andersen
,
P.
Cladé
,
V.
Natarajan
,
K.
Helmerson
, and
W. D.
Phillips
, “
Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap
,”
Phys. Rev. Lett.
99
,
260401
(
2007
).
12.
K.
Merloti
,
R.
Dubessy
,
L.
Longchambon
,
A.
Perrin
,
P.-E.
Pottie
,
V.
Lorent
, and
H.
Perrin
, “
A two-dimensional quantum gas in a magnetic trap
,”
New J. Phys.
15
,
033007
(
2013
).
13.
G.
Gauthier
,
T. A.
Bell
,
A. B.
Stilgoe
,
M.
Baker
,
H.
Rubinsztein-Dunlop
, and
T. W.
Neely
,
Dynamic High-Resolution Optical Trapping of Ultracold Atoms
(
Academic Press
,
2021
), Chap. 1,pp. 1–101.
14.
B. M.
Garraway
and
H.
Perrin
, “
Recent developments in trapping and manipulation of atoms with adiabatic potentials
,”
J. Phys. B: At. Mol. Opt. Phys.
49
,
172001
(
2016
).
15.
H.
Perrin
and
B. M.
Garraway
, “Trapping atoms with radio-frequency adiabatic potentials,” in Advances in Atomic, Molecular, and Optical Physics, edited by E. Arimondo, C. C. Lin, and S. F. Yelin (Academic Press, 2017), Vol. 66, Chap. 4, pp. 181–262.
16.
C.
De Rossi
,
R.
Dubessy
,
K.
Merloti
,
M.
de Goër de Herve
,
T.
Badr
,
A.
Perrin
,
L.
Longchambon
, and
H.
Perrin
, “
Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics
,”
New J. Phys.
18
,
062001
(
2016
).
17.
A. J.
Barker
,
S.
Sunami
,
D.
Garrick
,
A.
Beregi
,
K.
Luksch
,
E.
Bentine
, and
C. J.
Foot
, “
Coherent splitting of two-dimensional Bose gases in magnetic potentials
,”
New J. Phys.
22
,
103040
(
2020
).
18.
S.
Sunami
,
V. P.
Singh
,
D.
Garrick
,
A.
Beregi
,
A. J.
Barker
,
K.
Luksch
,
E.
Bentine
,
L.
Mathey
, and
C. J.
Foot
, “
Observation of the Berezinskii-Kosterlitz-Thouless transition in a two-dimensional Bose gas via matter-wave interferometry
,”
Phys. Rev. Lett.
128
,
250402
(
2022
).
19.
Y.
Guo
,
R.
Dubessy
,
M. D. G.
de Herve
,
A.
Kumar
,
T.
Badr
,
A.
Perrin
,
L.
Longchambon
, and
H.
Perrin
, “
Supersonic rotation of a superfluid: A long-lived dynamical ring
,”
Phys. Rev. Lett.
124
,
025301
(
2020
).
20.
R. A.
Carollo
,
D. C.
Aveline
,
B.
Rhyno
,
S.
Vishveshwara
,
C.
Lannert
,
J. D.
Murphree
,
E. R.
Elliott
,
J. R.
Williams
,
R. J.
Thompson
, and
N.
Lundblad
, “
Observation of ultracold atomic bubbles in orbital microgravity
,”
Nature
606
,
281
286
(
2022
).
21.
Y.
Guo
,
E.
Mercado Gutierrez
,
D.
Rey
,
T.
Badr
,
A.
Perrin
,
L.
Longchambon
,
V.
Bagnato
,
H.
Perrin
, and
R.
Dubessy
, “
Expansion of a quantum gas in a shell trap
,”
New J. Phys.
24
,
093040
(
2022
).
22.
Y.
Colombe
,
E.
Knyazchyan
,
O.
Morizot
,
B.
Mercier
,
V.
Lorent
, and
H.
Perrin
, “
Ultracold atoms confined in rf-induced two-dimensional trapping potentials
,”
Europhys. Lett.
67
,
593
599
(
2004
).
23.
M.
Gildemeister
,
E.
Nugent
,
B. E.
Sherlock
,
M.
Kubasik
,
B. T.
Sheard
, and
C. J.
Foot
, “
Trapping ultracold atoms in a time-averaged adiabatic potential
,”
Phys. Rev. A
81
,
031402
(
2010
).
24.
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose-Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
25.
D. S.
Naik
and
C.
Raman
, “
Optically plugged quadrupole trap for Bose-Einstein condensates
,”
Phys. Rev. A
71
,
033617
(
2005
).
26.
S.
Pandey
,
H.
Mas
,
G.
Drougakis
,
P.
Thekkeppatt
,
V.
Bolpasi
,
G.
Vasilakis
,
K.
Poulios
, and
W.
von Klitzing
, “
Hypersonic Bose–Einstein condensates in accelerator rings
,”
Nature
570
,
205
209
(
2019
).
27.
Y.-J.
Lin
,
A. R.
Perry
,
R. L.
Compton
,
I. B.
Spielman
, and
J. V.
Porto
, “
Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential
,”
Phys. Rev. A
79
,
063631
(
2009
).
28.
O.
Zobay
and
B. M.
Garraway
, “
Two-dimensional atom trapping in field-induced adiabatic potentials
,”
Phys. Rev. Lett.
86
,
1195
1198
(
2001
).
29.
R.
Dubessy
,
K.
Merloti
,
L.
Longchambon
,
P.-E.
Pottie
,
T.
Liennard
,
A.
Perrin
,
V.
Lorent
, and
H.
Perrin
, “
Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap
,”
Phys. Rev. A
85
,
013643
(
2012
).
30.
One PXIe-6738 analog I/O card and two PXIe-6535 digital I/O cards from National Instruments.
31.
P. T.
Starkey
,
C. J.
Billington
,
S. P.
Johnstone
,
M.
Jasperse
,
K.
Helmerson
,
L. D.
Turner
, and
R. P.
Anderson
, “
A scripted control system for autonomous hardware-timed experiments
,”
Rev. Sci. Instrum.
84
,
085111
(
2013
).
32.
P. T.
Starkey
, “A software framework for control and automation of precisely timed experiments,” Ph.D. thesis (Monash University, 2019).
33.
P. B.
Wigley
,
P. J.
Everitt
,
A.
van den Hengel
,
J. W.
Bastian
,
M. A.
Sooriyabandara
,
G. D.
McDonald
,
K. S.
Hardman
,
C. D.
Quinlivan
,
P.
Manju
,
C. C. N.
Kuhn
,
I. R.
Petersen
,
A. N.
Luiten
,
J. J.
Hope
,
N. P.
Robins
, and
M. R.
Hush
, “
Fast machine-learning online optimization of ultra-cold-atom experiments
,”
Sci. Rep.
6
,
25890
(
2016
).
34.
D.
Rey
, “Control and optimization of a Bose–Einstein condensation experiment,” Ph.D. thesis (Université Sorbonne Paris Nord, 2023).
35.
W.
Petrich
,
M. H.
Anderson
,
J. R.
Ensher
, and
E. A.
Cornell
, “
Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms
,”
Phys. Rev. Lett.
74
,
3352
3355
(
1995
).
36.
M.
de Goër de Herve
,
Y.
Guo
,
C.
De Rossi
,
A.
Kumar
,
T.
Badr
,
R.
Dubessy
,
L.
Longchambon
, and
H.
Perrin
, “
A versatile ring trap for quantum gases
,”
J. Phys. B: At., Mol. Opt. Phys.
54
,
125302
(
2021
).
37.
For 87Rb and a laser at 1064 nm, the light shift in frequency units is U 0 = q P / ( w x w z ), where q = 2.02 GHz W 1 μ m 2. Both D 1 and D 2 lines contribute to this light shift, as well as both corotating and counterrotating terms.7
38.
Here, we take into account only the linear Zeeman splitting as the local magnetic field is weak ( 0.5 G) and differential light shifts from the dimple beam are completely negligible (of the order of a few Hz).
39.
This residual trapping frequency is estimated to be of the order of ω y / ( 2 π ) 1 Hz.
40.
These values differ slightly from the values of Sec. II C because the laser beam position z L = 51 μ m as deduced from the rf spectroscopy was slightly different.
41.
O. J.
Luiten
,
M. W.
Reynolds
, and
J. T. M.
Walraven
, “
Kinetic theory of the evaporative cooling of a trapped gas
,”
Phys. Rev. A
53
,
381
389
(
1996
).
42.
W.
Ketterle
and
N. J.
van Druten
, “Evaporative cooling of trapped atoms,” in Advances in Atomic, Molecular and Optical Physics, edited by B. Bederson and H. Walther (Academic Press, San Diego, 1996), Vol. 37, pp. 181–236.
You do not currently have access to this content.