β-Gallium oxide (Ga2O3) is an extensively investigated ultrawide-bandgap semiconductor for potential applications in power electronics and radio frequency switching. The room temperature bulk electron mobility (200cm2V1s1) is comparatively low and is limited by the 30 phonon modes originating from its 10-atom primitive cell. The theoretically calculated saturation velocity in bulk is 1–2×107cms1 (comparable to GaN) and is limited by the low field mobility. This work explores the high field electron transport (and hence the velocity saturation) in the 2DEG based on the first principles calculated parameters. A self-consistent calculation on a given heterostructure design gives the confined eigenfunctions and eigenenergies. The intrasubband and the intersubband scattering rates are calculated based on the Fermi’s golden rule considering longitudinal optical (LO) phonon–plasmon screening. The high field characteristics are extracted from the full-band Monte Carlo simulation of heterostructures at 300 K. The overall system is divided into a 2D and a 3D region mimicking the electrons in the 2DEG and the bulk, respectively. The electron transport is treated through an integrated Monte Carlo program which outputs the steady state zone population, transient dynamics, and the velocity–field curves for a few heterostructure designs. The critical field for saturation does not change significantly from bulk values, however, an improved peak velocity is calculated at a higher 2DEG density. The velocity at low 2DEG densities is impacted by the antiscreening of LO phonons which plays an important role in shaping the zone population. A comparison with the experimental measurements is also carried out and possible origins of the discrepancies with experiments is discussed.

1.
M. N.
Hasan
,
E.
Swinnich
, and
J.-H.
Seo
, “
Recent progress in gallium oxide and diamond based high power and high-frequency electronics
,”
Wide Bandgap Semicond. Electronics Dev.
28
,
63
78
(
2020
).
2.
M.
Higashiwaki
and
G. H.
Jessen
, “Guest editorial: The dawn of gallium oxide microelectronics,”
Appl. Phys. Lett.
112, 060401 (2018).
3.
H.
Zhou
,
J.
Zhang
,
C.
Zhang
,
Q.
Feng
,
S.
Zhao
,
P.
Ma
, and
Y.
Hao
, “
A review of the most recent progresses of state-of-art gallium oxide power devices
,”
J. Semiconductors
40
,
011803
(
2019
).
4.
Z.
Liu
,
P.-G.
Li
,
Y.-S.
Zhi
,
X.-L.
Wang
,
X.-L.
Chu
, and
W.-H.
Tang
, “
Review of gallium oxide based field-effect transistors and Schottky barrier diodes
,”
Chin. Phys. B
28
,
017105
(
2019
).
5.
X.
Yan
,
I. S.
Esqueda
,
J.
Ma
,
J.
Tice
, and
H.
Wang
, “
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
,”
Appl. Phys. Lett.
112
,
032101
(
2018
).
6.
J.
Bae
,
H. W.
Kim
,
I. H.
Kang
,
G.
Yang
, and
J.
Kim
, “
High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate
,”
Appl. Phys. Lett.
112
,
122102
(
2018
).
7.
Y.
Lv
,
X.
Zhou
,
S.
Long
,
Y.
Wang
,
X.
Song
,
X.
Zhou
,
G.
Xu
,
S.
Liang
,
Z.
Feng
,
S.
Cai
, and
X.
Fu
, “
Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high breakdown voltage over 3000 V realized by oxygen annealing
,”
Phys. Status solidi (RRL)–Rapid Res. Lett.
14
,
1900586
(
2020
).
8.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
, “
A field-plated Ga2O3 MOSFET with near 2-kV breakdown voltage and 520 mω cm2 on-resistance
,”
Appl. Phys. Express
12
,
081003
(
2019
).
9.
J. K.
Mun
,
K.
Cho
,
W.
Chang
,
H.-W.
Jung
, and
J.
Do
, “
2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate
,”
ECS J. Solid State Sci. Technol.
8
,
Q3079
(
2019
).
10.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
, “
Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage
,”
IEEE Electron Device Lett.
41
,
836
839
(
2020
).
11.
N.
Yadava
and
R.
Chauhan
, “
Recent advances in designing gallium oxide MOSFET for RF application
,”
ECS J. Solid State Sci. Technol.
9
,
065010
(
2020
).
12.
K.
Chabak
,
D.
Walker
,
A.
Green
,
A.
Crespo
,
M.
Lindquist
,
K.
Leedy
,
S.
Tetlak
,
R.
Gilbert
,
N.
Moser
, and
G.
Jessen
, “Sub-micron gallium oxide radio frequency field-effect transistors,” in 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (IEEE, 2018), pp. 1–3.
13.
N.
Moser
,
K.
Liddy
,
A.
Islam
,
N.
Miller
,
K.
Leedy
,
T.
Asel
,
S.
Mou
,
A.
Green
, and
K.
Chabak
, “
Toward high voltage radio frequency devices in β-Ga2O3
,”
Appl. Phys. Lett.
117
,
242101
(
2020
).
14.
T.
Kamimura
,
Y.
Nakata
, and
M.
Higashiwaki
, “
Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors
,”
Appl. Phys. Lett.
117
,
253501
(
2020
).
15.
H.
Peelaers
and
C. G.
Van de Walle
, “
Sub-band-gap absorption in Ga2O3
,”
Appl. Phys. Lett.
111
,
182104
(
2017
).
16.
H.
Peelaers
and
C. G.
Van de Walle
, “
Brillouin zone and band structure of β-Ga2O3
,”
Phys. Stat. Sol. B
252
,
828
832
(
2015
).
17.
H.
Gao
,
S.
Muralidharan
,
N.
Pronin
,
M. R.
Karim
,
S. M.
White
,
T.
Asel
,
G.
Foster
,
S.
Krishnamoorthy
,
S.
Rajan
,
L. R.
Cao
, and
M.
Higashiwaki
, “
Optical signatures of deep level defects in Ga2O3
,”
Appl. Phys. Lett.
112
,
242102
(
2018
).
18.
S.
Oh
,
M. A.
Mastro
,
M. J.
Tadjer
, and
J.
Kim
, “
Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake
,”
ECS J. Solid State Sci. Technol.
6
,
Q79
(
2017
).
19.
K.
Ghosh
and
U.
Singisetti
, “
Impact ionization in β-Ga2O3
,”
J. Appl. Phys.
124
,
085707
(
2018
).
20.
K.
Ghosh
and
U.
Singisetti
, “
Ab initio calculation of electron–phonon coupling in monoclinic βGa2O3 crystal
,”
Appl. Phys. Lett.
109
,
072102
(
2016
).
21.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G.
Van de Walle
, “
Fundamental limits on the electron mobility of β-Ga2O3
,”
J. Phys.: Condens. Matter
29
,
234001
(
2017
).
22.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
K.
Goto
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
,
A.
Kuramata
, and
M.
Higashiwaki
, “
Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
108
,
101904
(
2016
).
23.
K.
Mengle
and
E.
Kioupakis
, “
Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: Impact on the mobility and breakdown field
,”
AIP Adv.
9
,
015313
(
2019
).
24.
A.
Parisini
,
K.
Ghosh
,
U.
Singisetti
, and
R.
Fornari
, “
Assessment of phonon scattering-related mobility in β-Ga2O3
,”
Semicond. Sci. Technol.
33
,
105008
(
2018
).
25.
A.
Kumar
,
K.
Ghosh
, and
U.
Singisetti
, “
Low field transport calculation of 2-dimensional electron gas in β-AlGa2O3/Ga2O3 heterostructures
,”
J. Appl. Phys.
128
,
105703
(
2020
).
26.
Y. W.
Zhang
,
A.
Neal
,
Z. B.
Xia
,
C.
Joishi
,
J. M.
Johnson
,
Y. H.
Zheng
,
S.
Bajaj
,
M.
Brenner
,
D.
Dorsey
,
K.
Chabak
,
G.
Jessen
,
J.
Hwang
,
S.
Mou
,
J. P.
Heremans
, and
S.
Rajan
, “
Demonstration of high mobility and quantum transport in modulation-doped β(AlxGa1x)2O3/Ga2O3 heterostructures
,”
Appl. Phys. Lett.
112
,
173502
(
2018
).
27.
Y.
Zhang
,
Z.
Xia
,
J.
Mcglone
,
W.
Sun
,
C.
Joishi
,
A. R.
Arehart
,
S. A.
Ringel
, and
S.
Rajan
, “
Evaluation of low-temperature saturation velocity in β(AlxGa1x)2O3/Ga2O3 modulation-doped field-effect transistors
,”
IEEE Trans. Electron Devices
66
,
1574
1578
(
2019
).
28.
Y.
Zhang
,
C.
Joishi
,
Z.
Xia
,
M.
Brenner
,
S.
Lodha
, and
S.
Rajan
, “
Demonstration of β-AlGa2O3/Ga2O3 double heterostructure field effect transistors
,”
Appl. Phys. Lett.
112
,
233503
(
2018
).
29.
S.
Krishnamoorthy
,
Z.
Xia
,
C.
Joishi
,
Y.
Zhang
,
J.
McGlone
,
J.
Johnson
,
M.
Brenner
,
A. R.
Arehart
,
J.
Hwang
,
S.
Lodha
, and
S.
Rajan
, “
Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor
,”
Appl. Phys. Lett.
111
,
023502
(
2017
).
30.
C.
Joishi
,
Y.
Zhang
,
Z.
Xia
,
W.
Sun
,
A. R.
Arehart
,
S.
Ringel
,
S.
Lodha
, and
S.
Rajan
, “
Breakdown characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 field-plated modulation-doped field-effect transistors
,”
IEEE Electron Device Lett.
40
,
1241
1244
(
2019
).
31.
N. K.
Kalarickal
,
Z.
Xia
,
H.-L.
Huang
,
W.
Moore
,
Y.
Liu
,
M.
Brenner
,
J.
Hwang
, and
S.
Rajan
, “
β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm
,”
IEEE Electron Device Lett.
42
,
899
902
(
2021
).
32.
Y.
Liu
,
P.
Wang
,
T.
Yang
,
Q.
Wu
,
Y.
Yang
, and
Z.
Zhang
, “
Steady-state and transient electronic transport properties of β-AlGa2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
,”
Chin. Phys. B
31
, 117305 (
2022
).
33.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
Fabris
,
G.
Fratesi
,
S.
de Gironcoli
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R.
Wentzcovitch
, “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
34.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
, “
Electron–phonon interaction using Wannier functions
,”
Phys. Rev. B
76
,
165108
(
2007
).
35.
K.
Ghosh
and
U.
Singisetti
, “
Ab initio velocity-field curves in monoclinic βGa2O3
,”
J. Appl. Phys.
122
,
035702
(
2017
).
36.
A. K.
Rajapitamahuni
,
A. K.
Manjeshwar
,
A.
Kumar
,
A.
Datta
,
P.
Ranga
,
L. R.
Thoutam
,
S.
Krishnamoorthy
,
U.
Singisetti
, and
B.
Jalan
, “
Plasmon-phonon coupling in electrostatically gated β-Ga2O3 films with mobility exceeding 200 cm2V1s1
,”
ACS Nano
16
, 8812–8819 (
2022
).
37.
S.
Poncé
,
E.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
Epw: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
38.
“Atlas User’s Manual,” SILVACO International (2016).
39.
E.
Ahmadi
,
H.
Chalabi
,
S. W.
Kaun
,
R.
Shivaraman
,
J. S.
Speck
, and
U. K.
Mishra
, “
Contribution of alloy clustering to limiting the two-dimensional electron gas mobility in AlGaN/GaN and InAlN/GaN heterostructures: Theory and experiment
,”
J. Appl. Phys.
116
,
133702
(
2014
).
40.
J.
Shah
, “
Hot carriers in quasi-2-D polar semiconductors
,”
IEEE J. Quantum Electron.
22
,
1728
1743
(
1986
).
41.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
2001
).
42.
B.
Sanborn
, “
Electron-electron interactions, coupled plasmon-phonon modes, and mobility in n-type GaAs
,”
Phys. Rev. B
51
,
14256
(
1995
).
43.
M.
Ramonas
,
A.
Matulionis
, and
L. F.
Eastman
, “
Monte Carlo evaluation of an analytical model for nonequilibrium-phonon-induced electron velocity saturation in GaN
,”
Semicond. Sci. Technol.
22
,
875
(
2007
).
44.
B. D.
Tierney
, “Monte Carlo studies of electron transport in semiconductor nanostructures,” Ph.D. thesis (Arizona State University, 2011).
45.
M.
Abou-Khalil
,
M.
Goano
,
A.
Champagne
, and
R.
Maciejko
, “
Capture and escape in quantum wells as scattering events in Monte Carlo simulation
,”
IEEE Photonics Technol. Lett.
8
,
19
21
(
1996
).
46.
Y.
Lam
and
J.
Singh
, “
Monte Carlo analysis of the carrier relaxation processes in linear-and parabolic-grinsch quantum well laser structures
,”
IEEE J. Quantum Electron.
30
,
1196
1203
(
1994
).
47.
Y.
Lam
and
J.
Singh
, “
Monte Carlo studies on the well-width dependence of carrier capture time in graded-index separate confinement heterostructure quantum well laser structures
,”
Appl. Phys. Lett.
63
,
1874
1876
(
1993
).
48.
C.-Y.
Tsai
,
L. F.
Eastman
,
Y.-H.
Lo
, and
C.-Y.
Tsai
, “
Carrier capture and escape in multisubband quantum well lasers
,”
IEEE Photonics Technol. Lett.
6
,
1088
1090
(
1994
).
49.
K.
Muraki
,
A.
Fujiwara
,
S.
Fukatsu
,
Y.
Shiraki
, and
Y.
Takahashi
, “
Evidence for resonant electron capture and charge buildup in GaAs/AlxGa1x as quantum wells
,”
Phys. Rev. B
53
,
15477
(
1996
).
50.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
).
51.
B. K.
Ridley
, “
The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures
,”
J. Phys. C: Solid State Phys.
15
,
5899
5917
(
1982
).
52.
B. B.
Varga
, “
Coupling of plasmons to polar phonons in degenerate semiconductors
,”
Phys. Rev.
137
,
A1896
A1902
(
1965
).
53.
K. S.
Singwi
and
M. P.
Tosi
, “
Interaction of plasmons and optical phonons in degenerate semiconductors
,”
Phys. Rev.
147
,
658
662
(
1966
).
54.
B.
Ridley
,
Quantum Processes in Semiconductors
(
OUP
,
Oxford
,
2013
).
55.
C. G.
Olson
and
D. W.
Lynch
, “
Longitudinal-optical-phonon-plasmon coupling in GaAs
,”
Phys. Rev.
177
,
1231
1234
(
1969
).
56.
R.
Cuscó
,
N.
Domènech-Amador
,
P.
Hung
,
W.-Y.
Loh
,
R.
Droopad
, and
L.
Artús
, “
Raman scattering study of LO phonon–plasmon coupled modes in p-type InGaAs
,”
J. Alloys Comp.
634
,
87
93
(
2015
).
57.
T.
Kozawa
,
T.
Kachi
,
H.
Kano
,
Y.
Taga
,
M.
Hashimoto
,
N.
Koide
, and
K.
Manabe
, “
Raman scattering from LO phonon–plasmon coupled modes in gallium nitride
,”
J. Appl. Phys.
75
,
1098
1101
(
1994
).
58.
A.
Mlayah
,
R.
Carles
,
E.
Bedel
, and
A.
Muñoz-Yagüe
, “
Polar phonon-intersubband plasmon coupling in Si delta-doped GaAs
,”
J. Appl. Phys.
74
,
1072
1078
(
1993
).
59.
L.
Artús
,
R.
Cuscó
,
J.
Ibáñez
,
N.
Blanco
, and
G.
González-Díaz
, “
Raman scattering by LO phonon-plasmon coupled modes in n-type InP
,”
Phys. Rev. B
60
,
5456
5463
(
1999
).
60.
R. J.
Bell
,
T. J.
McMahon
, and
D. G.
Rathbun
, “
Longitudinal optical phonon-plasmon coupling in CdS
,”
J. Appl. Phys.
39
,
48
51
(
1968
).
61.
M. V.
Klein
,
B. N.
Ganguly
, and
P. J.
Colwell
, “
Theoretical and experimental study of Raman scattering from coupled LO-phonon-plasmon modes in silicon carbide
,”
Phys. Rev. B
6
,
2380
2388
(
1972
).
62.
J.-L.
Farvacque
and
F.
Carosella
, “
Intrinsic free carrier mobility of quantum wells in polar materials
,”
Phys. Rev. B
72
,
125344
(
2005
).
63.
A.
Hauber
and
S.
Fahy
, “
Scattering of carriers by coupled plasmon-phonon modes in bulk polar semiconductors and polar semiconductor heterostructures
,”
Phys. Rev. B
95
,
045210
(
2017
).
64.
K.
Ghosh
and
U.
Singisetti
, “
Electron mobility in monoclinic βGa2O3—Effect of plasmon–phonon coupling, anisotropy, and confinement
,”
J. Mater. Res.
32
,
4142
4152
(
2017
).
65.
M.
Schubert
,
A.
Mock
,
R.
Korlacki
,
S.
Knight
,
Z.
Galazka
,
G.
Wagner
,
V.
Wheeler
,
M.
Tadjer
,
K.
Goto
, and
V.
Darakchieva
, “
Longitudinal phonon plasmon mode coupling in β-Ga2O3
,”
Appl. Phys. Lett.
114
,
102102
(
2019
).
66.
Å.
Björck
, “
Numerics of Gram–Schmidt orthogonalization
,”
Linear Algebra Appl.
197
,
297
316
(
1994
).
67.
Z.-C.
Zhang
,
Y.
Wu
,
C.
Lu
, and
S.
Ahmed
, “
Electron mobility in β-Ga2O3: An ensemble Monte Carlo study
,”
Appl. Phys. A
124
,
1
5
(
2018
).
68.
K.
Hess
,
Monte Carlo Device Simulation: Full Band and Beyond
(
Springer Science & Business Media
,
2012
), Vol. 144.
69.
H.
Jung
,
K.
Taniguchi
, and
C.
Hamaguchi
, “
Impact ionization model for full band Monte Carlo simulation in GaAs
,”
J. Appl. Phys.
79
,
2473
2480
(
1996
).
70.
C.
Jungemann
,
S.
Keith
,
M.
Bartels
, and
B.
Meinerzhagen
, “
Efficient full-band Monte Carlo simulation of silicon devices
,”
IEICE Trans. Electron.
82
,
870
879
(
1999
).
71.
T.
Kunikiyo
,
M.
Takenaka
,
Y.
Kamakura
,
M.
Yamaji
,
H.
Mizuno
,
M.
Morifuji
,
K.
Taniguchi
, and
C.
Hamaguchi
, “
A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model
,”
J. Appl. Phys.
75
,
297
312
(
1994
).
72.
S.
Tyaginov
,
I.
Starkov
,
O.
Triebl
,
J.
Cervenka
,
C.
Jungemann
,
S.
Carniello
,
J. M.
Park
,
H.
Enichlmair
,
M.
Karner
,
C.
Kernstock
, and
E.
Seebacher
, “Hot-carrier degradation modeling using full-band Monte-Carlo simulations,” in 2010 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IEEE, 2010), pp. 1–5.
73.
N.
Fitzer
,
A.
Kuligk
,
R.
Redmer
,
M.
Städele
,
S. M.
Goodnick
, and
W.
Schattke
, “
Full-band Monte Carlo simulations of high-field electron transport in GaAs and ZnS
,”
Phys. Rev. B
67
,
201201
(
2003
).
74.
U. V.
Bhapkar
and
M. S.
Shur
, “
Monte Carlo calculation of velocity-field characteristics of wurtzite GaN
,”
J. Appl. Phys.
82
,
1649
1655
(
1997
).
75.
T.-H.
Yu
and
K. F.
Brennan
, “
Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures
,”
J. Appl. Phys.
91
,
3730
3736
(
2002
).
76.
F.
Bertazzi
,
M.
Moresco
, and
E.
Bellotti
, “
Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model
,”
J. Appl. Phys.
106
,
063718
(
2009
).
77.
M. V.
Fischetti
and
S. E.
Laux
, “
Monte Carlo study of electron transport in silicon inversion layers
,”
Phys. Rev. B
48
,
2244
(
1993
).
78.
D.
Dolgos
,
H.
Meier
,
A.
Schenk
, and
B.
Witzigmann
, “Full-band Monte Carlo simulation of single photon avalanche diodes,” in 2013 IEEE Photonics Conference (IEEE, 2013), pp. 360–361.
79.
A.
Rowberg
,
K.
Krishnaswamy
, and
C.
Van de Walle
, “
Inflection points in the conduction-band structure of BaSnO3
,”
Phys. Rev. B
102
,
115201
(
2020
).
80.
H.
Kromer
, “
The physical principles of a negative-mass amplifier
,”
Proc. IRE
47
,
397
406
(
1959
).
81.
P.
Kaus
, “
Role of negative effective mass in negative resistance
,”
Phys. Rev. Lett.
3
,
20
(
1959
).
82.
P.
Houston
and
A.
Evans
, “
Saturation velocity of electrons in GaAs
,”
IEEE Trans. Electron Devices
23
,
584
586
(
1976
).
83.
P.
Houston
and
A.
Evans
, “
Electron drift velocity in n-GaAs at high electric fields
,”
Solid-State Electron.
20
,
197
204
(
1977
).
84.
B.
Ridley
,
W.
Schaff
, and
L.
Eastman
, “
Hot-phonon-induced velocity saturation in GaN
,”
J. Appl. Phys.
96
,
1499
1502
(
2004
).
85.
M.
Piccardo
,
L.
Martinelli
,
J.
Iveland
,
N.
Young
,
S. P.
DenBaars
,
S.
Nakamura
,
J. S.
Speck
,
C.
Weisbuch
, and
J.
Peretti
, “
Determination of the first satellite valley energy in the conduction band of wurtzite GaN by near-band-gap photoemission spectroscopy
,”
Phys. Rev. B
89
,
235124
(
2014
).
86.
L.
Tian
and
W.
Shi
, “
Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches
,”
J. Appl. Phys.
103
,
124512
(
2008
).
87.
V.
Perebeinos
and
P.
Avouris
, “
Inelastic scattering and current saturation in graphene
,”
Phys. Rev. B
81
,
195442
(
2010
).

Supplementary Material

You do not currently have access to this content.