Spark discharges in water have great potential for use in various technological fields, including pollutant degradation, precision micromachining, and nanomaterial production. However, the large-scale application of these discharges is limited by the complexity of the implicated physical and chemical phenomena, which cannot be easily controlled. In this study, we assess the effect of an external B-field on the electrical characteristics of multiple successive discharges, as well as on the erosion of the electrode. In addition to the B = 0 condition, two configurations of the B-field are investigated: B-parallel and B-perpendicular to the electrode axis, both at the magnitude of 125 mT. The obtained results demonstrate that discharge electrical characteristics and electrode erosion are significantly affected by the B-field. Using a W electrode, the highest and lowest discharge currents are measured in the case of B-perpendicular and B = 0, respectively. Meanwhile, the highest erosion volume is obtained in the case of B = 0. To assess the influence of electrode nature and magnetic properties on the discharges, the results obtained using W (paramagnetic) electrodes were compared to those obtained with Ni (ferromagnetic). The comparison shows that the discharge electrical data are tightly distributed when the Ni electrode is utilized, regardless of the B-condition, whereas the data obtained with the W electrode exhibit significant statistical variations in the presence of the B-field. Overall, the data reported herein indicate that the electrical properties of a spark discharge may be varied and controlled by applying an external B-field.

1.
H.
Cavendish
, “
XXIII. Experiments on air
,”
Philos. Trans. R. Soc. London
75,
372
384
(
1785
).
2.
S.
Kumar
,
R.
Singh
,
T. P.
Singh
, and
B. L.
Sethi
, “
Surface modification by electrical discharge machining: A review
,”
J. Mater. Process. Technol.
209
(
8
),
3675
3687
(
2009
).
3.
M.
Wiessner
,
F. T. B.
Macedo
,
C. P.
Martendal
,
F.
Kuster
, and
K.
Wegener
, “
Fundamental investigation of EDM plasmas, part I: A comparison between electric discharges in gaseous and liquid dielectric media
,”
Proc. CIRP
68
,
330
335
(
2018
).
4.
M. P.
Jahan
,
M.
Rahman
, and
Y. S.
Wong
, “
A review on the conventional and micro-electrodischarge machining of tungsten carbide
,”
Int. J. Machine Tools Manuf.
51
(
12
),
837
858
(
2011
).
5.
G.
Saito
and
T.
Akiyama
, “
Nanomaterial synthesis using plasma generation in liquid
,”
J. Nanomater.
2015, 123696.
6.
Q.
Chen
,
J.
Li
, and
Y.
Li
, “
A review of plasma–liquid interactions for nanomaterial synthesis
,”
J. Phys. D: Appl. Phys.
48
(
42
),
424005
(
2015
).
7.
I.
Marinov
,
S.
Starikovskaia
, and
A.
Rousseau
, “
Dynamics of plasma evolution in a nanosecond underwater discharge
,”
J. Phys. D: Appl. Phys.
47
(
22
),
224017
(
2014
).
8.
H.
Kabbara
,
J.
Ghanbaja
,
C.
Noël
, and
T.
Belmonte
, “
Synthesis of Cu@ ZnO core–shell nanoparticles by spark discharges in liquid nitrogen
,”
Nano-Struct. Nano-Objects
10
,
22
29
(
2017
).
9.
S.-H.
Jung
,
M.-R.
Kim
,
S.-H.
Jeong
,
S.-U.
Kim
,
O.-J.
Lee
,
K.-H.
Lee
, and
C.-K.
Park
, “
High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen
,”
Appl. Phys. A: Mater. Sci. Process.
76
(
2
),
285
286
(
2003
).
10.
A.
Muttamara
,
Y.
Fukuzawa
,
N.
Mohri
, and
T.
Tani
, “
Probability of precision micro-machining of insulating Si3N4 ceramics by EDM
,”
J. Mater. Process. Technol.
140
(
1–3
),
243
247
(
2003
).
11.
T.
Belmonte
,
A.
Hamdan
,
F.
Kosior
,
C.
Noël
, and
G.
Henrion
, “
Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis
,”
J. Phys. D: Appl. Phys.
47
(
22
),
224016
(
2014
).
12.
X.
Glad
,
J.
Profili
,
M. S.
Cha
, and
A.
Hamdan
, “
Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities
,”
J. Appl. Phys.
127
(
2
),
023302
(
2020
).
13.
X.
Glad
,
J.
Gorry
,
M. S.
Cha
, and
A.
Hamdan
, “
Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons
,”
Sci. Rep.
11
(
1
),
1
12
(
2021
).
14.
D.
Kumar
,
V.
Bajpai
, and
N. K.
Singh
, “
Nano electrical discharge machining–the outlook, challenges, and opportunities
,”
Mater. Manuf. Processes
36
(
10
),
1099
1133
(
2021
).
15.
B.
Sen
,
N.
Kiyawat
,
P. K.
Singh
,
S.
Mitra
,
J. H.
Ye
, and
P.
Purkait
, “
Developments in electric power supply configurations for electrical-discharge-machining (EDM)
,” in
The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003
(
IEEE
,
2003
), Vol.
1
, pp.
659
664
.
16.
G.
Xing
,
S.
Jia
, and
Z.
Shi
, “
Influence of transverse magnetic field on the formation of carbon nano-materials by arc discharge in liquid
,”
Carbon
45
(
13
),
2584
2588
(
2007
).
17.
G.
Xing
,
S.
Jia
, and
Z.
Shi
, “
Influence of magnetic field parallel to the arc on the formation of carbon nano-materials by arc discharge in water
,”
Carbon
47
(
8
),
2131
2133
(
2009
).
18.
H. E.
De Bruijn
, “
Effect of a magnetic field on the gap cleaning in EDM
,”
Ann. CIRP
27
(
1
),
93
95
(
1978
).
19.
Y.-C.
Lin
,
Y.-F.
Chen
,
D.-A.
Wang
, and
H.-S.
Lee
, “
Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method
,”
J. Mater. Process. Technol.
209
(
7
),
3374
3383
(
2009
).
20.
A.
Gholipoor
,
H.
Baseri
,
M.
Shakeri
, and
M.
Shabgard
, “
Investigation of the effects of magnetic field on near-dry electrical discharge machining performance
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
230
(
4
),
744
751
(
2016
).
21.
P.
Govindan
,
A.
Gupta
,
S. S.
Joshi
,
A.
Malshe
, and
K. P.
Rajurkar
, “
Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM
,”
J. Mater. Process. Technol.
213
(
7
),
1048
1058
(
2013
).
22.
Z.
Zhang
,
Y.
Zhang
,
W.
Ming
,
Y.
Zhang
,
C.
Cao
, and
G.
Zhang
, “
A review on magnetic field assisted electrical discharge machining
,”
J. Manuf. Processes
64
,
694
722
(
2021
).
23.
M. R.
Shabgard
,
A.
Gholipoor
, and
M.
Mohammadpourfard
, “
Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process, numerically and experimentally
,”
Int. J. Adv. Manuf. Technol.
102
(
1
),
55
65
(
2019
).
24.
24See https://www.femm.info/wiki/HomePage for “HomePage:Finite Element Method Magnetics” (last accessed
July 12, 2022
).
25.
N.
Bourbeau
,
A.
Dorval
,
F.
Valensi
, and
A.
Hamdan
, “
Statistical analysis of pulsed discharges in dielectric liquid: Effects of voltage amplitude, pulse width, electrode configuration, and liquid composition
,”
J. Phys. D: Appl. Phys.
54
(
48
),
485201
(
2021
).
26.
A.
Dorval
,
K.
Geraud
,
F.
Valensi
, and
A.
Hamdan
, “
Statistical analysis of pulsed spark discharges in water: Effects of gap distance, electrode material, and voltage polarity on discharge characteristics
,”
J. Vac. Sci. Technol. A
40
(
4
),
043006
(
2022
).
27.
C.
Rond
,
N.
Fagnon
,
A.
Vega
, and
X.
Duten
, “
Statistical analysis of a micro-pulsed electrical discharge in water
,”
J. Phys. D: Appl. Phys.
53
(
33
),
335204
(
2020
).
28.
W.
Tian
,
K.
Tachibana
, and
M. J.
Kushner
, “
Plasmas sustained in bubbles in water: Optical emission and excitation mechanisms
,”
J. Phys. D: Appl. Phys.
47
(
5
),
055202
(
2014
).
29.
A. Y.
Starikovskiy
,
N. L.
Aleksandrov
, and
M. N.
Shneider
, “
Streamer self-focusing in an external longitudinal magnetic field
,”
Phys. Rev. E
103
(
6
),
063201
(
2021
).
30.
A.
Dorval
,
N.
Bourbeau
,
K.
Géraud
,
F.
Valensi
, and
A.
Hamdan
, “
Influence of electrodes nature on the electrical characteristics of spark discharges in water
,” in
2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)
(
IEEE
,
2021
), pp.
1
4
.

Supplementary Material

You do not currently have access to this content.