Dislocations in a diamond (111) homoepitaxial layer were investigated in terms of the line directions and types. After a thick homoepitaxial layer was grown on a {111} high-pressure high-temperature (HPHT) substrate using chemical vapor deposition (CVD), the Raman spectra of diamond were taken using a confocal setup to obtain the spatial distribution of the peak positions of the diamond Raman line. Dislocations in the CVD layer and HPHT substrate were detected as local stress variation in the peak position images. The line directions of dislocations were, respectively, [112] for the HPHT substrate and [011] for the CVD layer. Local stress variation was in the [1¯1¯2] direction in both the CVD layer and the HPHT substrate. The Burgers vector deduced from the local stress-variation direction indicated the dislocation structures, respectively, as an edge type for [112] dislocations in the HPHT substrate and as a 60° mixed type for [011] dislocations in the CVD layer. Because both dislocations had the same slip plane, the line direction and dislocation type changed on the same slip plane at the CVD layer/HPHT substrate interface, when dislocation in the HPHT substrate reached the CVD layer.

1.
H. J.
Queisser
and
E. E.
Haller
, “
Defects in semiconductors: Some fatal, some vital
,”
Science
281
,
945
(
1998
).
2.
W. C.
Dash
, “
Growth of silicon crystals free from dislocations
,”
J. Appl. Phys.
30
,
459
(
1959
).
3.
D.
Hull
and
D. J.
Bacon
, in
Introduction to Dislocations
, 4th ed. (
Butterworth-Heinemann
,
Oxford
,
2001
).
4.
J.
Rabier
,
L.
Pizzagalli
, and
J. L.
Demenet
, “
Dislocations in silicon at high stress
,” in
Dislocations in Solids
, edited by
J. P.
Hirth
and
L.
Kubin
(
North-Holland
,
The Netherlands
,
2010
), Vol. 16, pp.
47
108
.
5.
T.
Okuno
and
H.
Saka
, “
Electron microscope study of dislocations introduced by deformation in a Si between 77 and 873 K
,”
J. Mater. Sci.
48
,
115
(
2013
).
6.
A. R.
Lang
, “
Defects in natural diamonds: Recent observations by new methods
,”
J. Cryst. Growth
42
,
625
(
1977
).
7.
B.
Lawn
,
Y.
Kamiya
, and
A. R.
Lang
, “
An x-ray topographic study of planar growth defects in a natural diamond
,”
Philos. Mag.
12
,
177
(
1965
).
8.
B.
Willems
,
P. M.
Martineau
,
D.
Fisher
,
J.
Van Royen
, and
G.
Van Tendeloo
, “
Dislocation distributions in brown diamond
,”
Phys. Status Solidi A
203
,
3076
(
2006
).
9.
S.
Satoh
,
H.
Sumiya
,
K.
Tsuji
,
S.
Yazu
 et al, “
Difference in nitrogen concentration and aggregation among (111) and (100) growth sectors of large synthetic diamonds
,” in
Science and Technology of New Diamond
, edited by
S.
Saito
(
Tokyo Terra Scientific
,
1990
), pp.
351
355
.
10.
H.
Sumiya
,
N.
Toda
,
Y.
Nishibayashi
, and
S.
Satoh
, “
Crystalline perfection of high purity synthetic diamond crystal
,”
J. Cryst. Growth
178
,
485
(
1997
).
11.
A. F.
Khokhryakov
,
Y. N.
Palyanov
,
I. N.
Kupriyanov
,
Y. M.
Borzdov
,
A. G.
Sokol
,
J.
Härtwig
, and
F.
Masiello
, “
Crystal growth and perfection of large octahedral synthetic diamonds
,”
J. Cryst. Growth
317
,
32
(
2011
).
12.
A. A.
Shiryaev
,
F.
Masiello
,
J.
Hartwig
,
I. N.
Kupriyanov
,
T. A.
Lafford
,
S. V.
Titkov
, and
Y. N.
Palyanov
, “
X-ray topography of diamond using forbidden reflections: Which defects do we really see?
,”
J. Appl. Crystallogr.
44
,
65
(
2011
).
13.
N.
Tatsumi
,
K.
Tamasaku
,
T.
Ito
, and
H.
Sumiya
, “
Behavior of crystal defects in synthetic type-IIa single-crystalline diamond at high temperatures under normal pressure
,”
J. Cryst. Growth
458
,
27
(
2017
).
14.
M.
Moore
,
S.
Nailer
, and
W.
Wierzchowski
, “
Optical and x-ray topographic studies of dislocations, growth-sector boundaries, and stacking faults in synthetic diamonds
,”
Crystals
6
,
71
(
2016
).
15.
Y.
Kato
,
H.
Umezawa
,
H.
Yamaguchi
, and
S.
Shikata
, “
Structural analysis of dislocations in type-IIa single-crystal diamond
,”
Diam. Relat. Mater.
29
,
37
(
2012
).
16.
T.
Teraji
,
T.
Yamamoto
,
K.
Watanabe
,
Y.
Koide
,
J.
Isoya
,
S.
Onoda
,
T.
Ohshima
,
L. J.
Rogers
,
F.
Jelezko
,
P.
Neumann
,
J.
Wrachtrup
, and
S.
Koizumi
, “
Homoepitaxial diamond film growth: High purity, high crystalline quality, isotopic enrichment, and single color center formation
,”
Phys. Status Solidi
212
,
2365
(
2015
).
17.
Y.
Mokuno
,
Y.
Kato
,
N.
Tsubouchi
,
A.
Chayahara
,
H.
Yamada
, and
S.
Shikata
, “
A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by using a lift-off process
,”
Appl. Phys. Lett.
104
,
252109
(
2014
).
18.
J.
Achard
,
F.
Silva
,
A.
Tallaire
,
X.
Bonnin
,
G.
Lombardi
,
K.
Hassouni
, and
A.
Gicquel
, “
High quality MPACVD diamond single crystal growth: High microwave power density regime
,”
J. Phys. D: Appl. Phys.
40
,
6175
(
2007
).
19.
M. P.
Gaukroger
,
P. M.
Martineau
,
M. J.
Crowder
,
I.
Friel
,
S. D.
Williams
, and
D. J.
Twitchen
, “
X-ray topography studies of dislocations in single crystal CVD diamond
,”
Diam. Relat. Mater.
17
,
262
(
2008
).
20.
M.
Schreck
,
M.
Mayr
,
O.
Klein
,
M.
Fischer
,
S.
Gsell
,
A. F.
Sartori
, and
B.-C.
Gallheber
, “
Multiple role of dislocations in the heteroepitaxial growth of diamond: A brief review
,”
Phys. Status Solidi. A
213
,
2028
(
2016
).
21.
N.
Fujita
,
A. T.
Blumenau
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
, “
Theoretical studies on
100
 dislocations in single crystal CVD diamond
,”
Phys. Status Solidi Appl. Mater. Sci.
203
,
3070
(
2006
).
22.
D.
Araújo
,
E.
Bustarret
,
A.
Tajani
,
P.
Achatz
,
M.
Gutiérrez
,
A. J.
García
, and
M. P.
Villar
, “
Comparison of the crystalline quality of homoepitaxially grown CVD diamond layer on cleaved and polished substrates
,”
Phys. Status Solidi A
207
,
2023
(
2010
).
23.
S.
Masuya
and
M.
Kasu
, “
Dislocations in chemical vapor deposition (111) single crystal diamond observed by synchrotron x-ray topography and their relation with etch pits
,”
Diam. Relat. Mater.
90
,
40
(
2018
).
24.
K.
Ichikawa
,
T.
Shimaoka
,
Y.
Kato
,
S.
Koizumi
, and
T.
Teraji
, “
Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging
,”
J. Appl. Phys.
128
,
155302
(
2020
).
25.
M.
Mermoux
,
B.
Marcus
,
A.
Crisci
,
A.
Tajani
,
E.
Gheeraert
, and
E.
Bustarret
, “
Micro-Raman scattering from undoped and phosphorous-doped (111) homoepitaxial diamond films: Stress imaging of cracks
,”
J. Appl. Phys.
97
,
043530
(
2005
).
26.
A.
Crisci
,
F.
Baillet
,
M.
Mermoux
,
G.
Bogdan
,
M.
Nesládek
, and
K.
Haenen
, “
Residual strain around grown-in defects in CVD diamond single crystals: A 2D and 3D Raman imaging study
,”
Phys. Status Solidi A
208
,
2038
(
2011
).
27.
Y.
von Kaenel
,
J.
Stiegler
,
J.
Michler
, and
E.
Blank
, “
Stress distribution in heteroepitaxial chemical vapor deposited diamond films
,”
J. Appl. Phys.
81
,
1726
(
1997
).
28.
B.-C.
Gallheber
,
O.
Klein
,
M.
Fischer
, and
M.
Schreck
, “
Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress
,”
J. Appl. Phys.
121
,
225301
(
2017
).
29.
A. T.
Blumenau
,
M. I.
Heggie
,
C. J.
Fall
,
R.
Jones
, and
T.
Frauenheim
, “
Dislocations in diamond: Core structures and energies
,”
Phys. Rev. B
65
,
205205
(
2002
).
30.
J.
Hornstra
, “
Dislocations in the diamond lattice
,”
J. Phys. Chem. Solids
5
,
129
(
1958
).
31.
P.
Martineau
,
M.
Gaukroger
,
R.
Khan
, and
D.
Evans
, “
Effect of steps on dislocations in CVD diamond grown on {001} substrates
,”
Phys. Status Solidi C
6
,
1953
(
2009
).
32.
N.
Tsubouchi
, “
Conversions of a stacking fault to threading dislocations in homoepitaxial diamond growth studied by transmission electron microscopy
,”
Appl. Phys. Lett.
117
,
222103
(
2020
).
33.
N. V.
Surovtsev
and
I. N.
Kupriyanov
, “
Effect of nitrogen impurities on the Raman line width in diamond, revisited
,”
Crystals
7
,
239
(
2017
).
34.
H.
Klapper
, “
Generation and propagation of dislocations during crystal growth
,”
Mater. Chem. Phys.
66
,
101
(
2000
).
You do not currently have access to this content.