Using a quantum mechanical calculation, we investigate the fundamental limitations of the Schottky emission (SE) model for its applications to electron injection into dielectrics from a metal or semiconductor electrode. This work covers a wide range of electric fields from 0.01 to 10 MV/cm and a large temperature span with many barrier height values (ΦB). We conclude that the SE model is only applicable for a very small class of dielectrics under 0.1 MV/cm and at high temperatures over ∼330 K. For many defective dielectrics with large barrier heights (ΦB ≥ ∼1.5 eV) in back-of-line/middle-of-line/metal–insulator–metal capacitor applications, the corresponding electric fields for the measurable currents far exceed 0.1 MV/cm, and up to 10 MV/cm, the application of the SE model is likely invalid so that the extracted ΦB values may not be correct. We provide a quantitative guide to avoid future misapplications of the SE model.

1.
W.
Schottky
,
Z. Phys
.
15
,
872
(
1914
); 14, 63 (1923).
2.
J.
Frenkel
, “
On pre-breakdown phenomena in insulators and electronic semiconductors
,”
Phys. Rev.
54
,
647
648
(
1938
).
3.
S.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
), p.
85
.
4.
F.-C.
Chiu
, “
A review on conduction mechanisms in dielectric films
,”
Adv. Mater. Sci. Eng.
2014, 1–18.
5.
E. W.
Lim
and
R.
Ismail
, “
Review: Conduction mechanism of valence change resistive switching memory: A survey
,”
Electronics
4
,
586
(
2015
).
6.
E.
Atanassova
and
A.
Paskaleva
, “
Breakdown fields and conduction mechanisms in thin Ta2O5 layers on Si for high density DRAMs
,”
Microelectron. Reliabil.
42
,
157
173
(
2002
).
7.
F.
Chen
,
O.
Bravo
,
K.
Chanda
,
P.
McLaughlin
,
T.
Sullivan
,
J.
Gill
,
J.
Lloyd
,
R.
Kontra
, and
J.
Aitken
, “
A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development
,” in
Proceeding of International Reliability Physics Symposium
(IEEE, Piscataway, NJ,
2006
), pp.
46
53
.
8.
V.
Vijayakumar
and
B.
Varadarajan
, “
Leakage current mechanisms and their dependence on composition in silicon carbonitride thin films
,”
Mater. Res. Express
2
,
046302
(
2015
).
9.
E. Y.
Wu
, “
Facts and myths about dielectric breakdown processes—Part I: Statistics, experimental, and physical acceleration models
,”
IEEE Trans. Electron Devices
66
,
4523
4534
(
2019
).
10.
N.
Suzumura
,
S.
Yamamoto
,
D.
Kodama
,
K.
Makabe
,
E.
Murakami
,
S.
Maegawa
, and
K.
Kubota
, “
A New TDDB degradation model based on Cu Ion drift in Cu interconnect dielectrics
,” in
International Reliability Physics Symposium Proceedings
(IEEE, Piscataway, NJ,
2006
), pp.
484
429
.
11.
T. K. S.
Wong
, “
Time dependent dielectric breakdown in copper low-k interconnect: Mechanism and reliability models
,”
Materials
5
,
1602
(
2012
).
12.
H.
Schroeder
, “
Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
,”
J. Appl. Phys.
117
,
215103
(
2015
).
13.
L.
Larcher
,
A.
Padovani
,
F. M.
Puglisi
, and
P.
Pavan
, “
Extracting atomic defect properties from leakage current temperature dependence
,”
IEEE Trans. Electron Devices
65
,
5475
5480
(
2018
).
14.
B.
Wehring
,
R.
Hoffmann
,
L.
Gerlich
,
M.
Czernohorsky
,
B.
Uhlig
,
R.
Seidel
,
T.
Barchewitz
,
F.
Schlaphof
,
L.
Meinshausen
, “
BEoL reliability, XPS and REELS study on low-k dielectrics to understand breakdown mechanisms
,” in
Proceeding of International Reliability Physics Symposium
(IEEE, Piscataway, NJ
2006
), pp.
46
53
.
15.
J. M.
Atkin
,
D.
Song
,
T. M.
Shaw
,
E.
Cartier
,
R. B.
Laibowitz
, and
T. F.
Heinz
, “
Photocurrent spectroscopy of low-κ dielectric materials: Barrier heights and trap densities
,”
J. Appl. Phys.
103
,
094104
(
2008
).
16.
S.
Shamullia
,
V. V.
Afanas’ev
,
P.
Somers
,
A.
Stesmans
,
Y.-L.
Li
,
Z.
Tökel
,
G.
Groeseneken
, and
K.
Maex
, “
Internal photoemission of electrons at interfaces of metals with low-κ insulators
,”
Appl. Phys. Lett.
89
,
202909
(
2006
).
17.
M. J.
Mutch
,
T.
Pomorski
,
B. C.
Bittel
,
C. J.
Cochrane
,
P. M.
Lenahan
,
X.
Liu
,
R. J.
Nemanish
,
J.
Brockman
,
M.
French
,
M.
Kuhn
,
B.
French
, and
S.
King
, “
Band diagram for low-κ/Cu interconnects: The starting point for understanding back-end-of-line (BEOL) electrical reliability
,”
Microelectron. Reliabil.
63
,
201
213
(
2016
).
18.
S. W.
King
,
J.
Brockman
,
M.
French
,
M.
Jaehnig
,
M.
Kuhn
, and
B.
French
, “
Valence and conduction band offsets at low-κ at a-SiOxCy:H/a-SiCxNy:H interfaces
,”
J. Appl. Phys.
116
,
113703
(
2014
).
19.
J.
Baum
,
C.
Darmody
,
Y.
Cui
, and
N.
Goldsman
, “
Effects of Fermi pinning and quantum mechanisms on leakage current of 4H-SiC Schottky diodes
,”
J. Appl. Phys.
131
,
035703
(
2022
).
20.
D.
Ewing
,
L.
Porter
,
Q.
Wahab
 et al, “
Inhomogeneities in Ni/4H-SiC Schottky barriers: Localized Fermi-level pinning by defect states
,”
J. Appl. Phys.
101
,
114514
(
2007
).
21.
M.
Furno
,
F.
Bonani
, and
G.
Ghione
, “
Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide
,”
Solid State Electron.
51
,
466
474
(
2007
).
22.
G. G.
Gischia
,
K.
Croes
,
G.
Groeseneken
,
Z.
Tökei
,
V.
Afanas’ev
, and
L.
Zhao
, “Study leakage mechanism and trap density in porous low-k materials,” in International Reliability Physics Symposium, 5A.2.1-5A.2.7 (2010). Note that the authors already questioned the validity of using the Schottky model.
23.
R.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London
A 119
,
173
(
1928
).
24.
O. W.
Richardson
, Proc. Cambridge Phil. Sot. II, 286 (1902); Philos. Mag. 12, 263 (
1912
).
25.
E. L.
Murphy
and
R. H.
Good
 Jr
., “
Thermionic emission, field emission, and the transition region
,”
Phys. Rev.
102
,
1464
(
1956
).
26.
J.
Bardeen
, “
Tunneling from a many-particle point of view
,”
Phys. Rev. Lett.
6
(
2
),
57
59
(
1961
).
27.
W. A.
Harrison
, “
Tunneling from an independent-particle point view
,”
Phys. Rev.
123
(
1
),
85
89
(
1961
).
28.
R.
Tsu
and
L.
Esaki
, “
Tunneling in a finite superlattice
,”
Appl. Phys. Lett.
22
,
562
564
(
1973
).
29.
A.
Schenk
and
G.
Heiser
, “
Modelling and simulation of tunneling through ultra-thin gate dielectrics
,”
J. Appl. Phys.
81
(
12
),
7900
7908
(
1997
).
30.
S.-H.
Lo
,
D. A.
Buchanan
, and
Y.
Taur
, “
Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides
,”
IBM J. Res. Develop.
43
,
327
(
1999
).
31.
R.
Clerc
,
A.
Spinelli
,
G.
Ghibaudo
, and
G.
Pananakakis
, “
Theory of direct tunneling current in metal-oxide-semiconductor structures
,”
J. Appl. Phys.
91
,
1400
1409
(
2002
).
32.
A.
Gehring
and
S.
Selberherrm
, “
Modeling of tunneling current and gate dielectric reliability for nonvolatile memory devices
,”
IEEE Trans. Device Mater. Reliabil.
4
,
306
(
2004
).
33.
J. C.
Ranuárez
,
M. J.
Dean
, and
C. H.
Chen
, “
A review of gate tunneling current in MOS devices
,”
Micro. Relia.
46
,
1939
(
2006
).
34.
M.
Lenzilinger
and
E. H.
Snow
, “
Fowler-Nordheim tunneling into thermally grown SiO2
,”
J. Appl. Phys.
40
(
1
),
278
283
(
1969
).
35.
G. W.
Dietz
and
R.
Waser
, “
Charge injection in SrTiO3 thin films
,”
Thin Solid Films
299
,
53
58
(
1997
).
36.
A. K.
Ghatak
,
E. G.
Sauter
, and
I. C.
Goyal
, “
Validity of the JWKB formula for a triangular barrier
,”
Eur. J. Phys.
16
(
v
),
199
204
(
1997
).
37.
Y.
Shimada
,
A.
Inoue
,
T.
Nasu
,
K.
Arita
,
Y.
Nagano
,
A.
Matsuda
,
Y.
Uemoto
,
E.
Fujii
,
M.
Azuma
,
Y.
Oishi
,
S. I.
Hayashi
, and
T.
Otsuki
, “
Temperature-dependent current-voltage characteristics of fully processed Ba0.7Sr0.3TiO3 capacitors integrated in a silicon device
,”
Jpn. J. Appl. Phys. V
35
,
140
143
(
1996
).
38.
V. A.
Gritsenko
,
E. E.
Meerson
, and
Y. N.
Morokov
, “
Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures
,”
Phys. Rev. B
57
,
R2081
(
1998
).
39.
G.
Pananakakis
,
G.
Ghibaudo
,
R.
Kies
, and
C.
Papadas
, “
Temperature dependence of the Fowler-Nordheim current in metal-oxide-degenerated semiconductor structures
,”
J. Appl. Phys.
78
,
2635
(
1995
).
40.
M.
Copel
,
P. R.
Duncombe
,
D. A.
Neumayer
 et al, “
Metallization induced band bending of SrTiO3 (100) and Ba0.7Sr0.3TiO3
,”
Appl. Phys. Lett.
70
,
3227
(
1997
).
41.
V. V.
Afanas’ev
and
A.
Stesmans
, “
Internal photoemission at interface of high- insulators with semiconductors and metals
,”
Appl. Phys. Rev.
102
,
081301
(
2007
).
42.
A.
Hadjadj
,
G.
Salace
, and
C.
Petit
, “
Fowler-Nordheim conduction in polysilicon (n+)-oxide-silicon (p) structures: Limit of the classical treatment in the barrier height determination
,”
J. Appl. Phys.
89
(
12
),
7994
(
2001
).
43.
M.
Städele
,
B. R.
Tuttle
, and
K.
Hess
, “
Tunneling through ultrathin SiO2 gate oxide from microscopic models
,”
J. Appl. Phys.
89
(
1
),
348
363
(
2001
).
44.
F.
Sacconi
,
A.
Di Carlo
,
P.
Lugli
,
M.
Städele
, and
J.-M.
Jancu
, “
Full band approach to tunneling in MOS structures
,”
IEEE Trans. Electron Devices
51
(
5
),
741
748
(
2004
).
45.
S.
Zafar
,
K. A.
Conrad
,
Q.
Liu
,
E. A.
Irene
,
G.
Hames
,
R.
Kuehn
, and
J. J.
Wortman
,
Appl. Phys. Lett.
67
,
1031
(
1995
).
46.
R.
Ludeke
,
E.
Cartier
, and
A.
Schenk
,
Appl. Phys. Lett.
75
,
1407
(
1999
).
47.
M. A.
Green
, “
Intrinsic concentration, effective densities of states, and effective mass in silicon
,”
J. Appl. Phys.
67
(
6
),
2944
(
1990
).
48.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
John Wiley & Sons Inc.
,
New York
,
1996
).
49.
J. M.
Ziman
,
Electrons and Phonons
(
Oxford Press
,
1960
).
50.
J.
Robertson
, “
Band offsets of wide-band-gap oxides and implications for future electronic devices
,”
J. Vac. Sci. Technol. B
18
,
1785
(
2000
).
51.
J. D.
Casperson
,
L. D.
Bell
, and
H. A.
Atwater
, “
Materials issues for layered tunnel barrier structures
,”
J. Appl. Phys.
92
,
261
(
2002
).
52.
D.
Xu
,
L.
Yu
,
X.
Chen
 et al, “
In-situ analysis of oxygen vacancies and band alignment in HfO2/TiN structure for CMOS applications
,”
Nano Express
12
,
311
(
2017
).
53.
W.
Mönch
, “
On the band structure lineup at the interfaces of SiO2, Si3N4, and high-k dielectrics
,”
Appl. Phys. Lett.
86
,
122101
(
2005
).
54.
D. J.
DiMaria
and
P. C.
Arnett
, “
Hole injection into silicon nitride: Interface barrier energies by internal photoemission
,”
Appl. Phys. Lett.
26
,
711
(
1975
).
55.
V. V.
Afanas’ev
,
M.
Houssa
,
A.
Stesmans
,
G. J.
Adriaenssens
, and
M. M.
Heyns
, “
Band alignment at interfaces of Al2O3 and ZrO2-based insulators with metals and Si
,”
J. Non-Crystal. Solids
303
,
69
(
2002
).
56.
J.
Noguchi
,
T.
Saito
,
N.
Ohashi
 et al. , “
Impact of low-k dielectrics and barrier metals on TDDB lifetime of Cu interconnects
,” in
International Reliability Physics Symposium
(IEEE, Piscataway, NJ,
2001
), pp.
355
359
.
57.
E.
Ogawa
 et al., “
Leakage, breakdown, and TDDB characteristics of porous low-k, silica-based interconnect dielectrics
,” in
International Reliability Physics Symposium Proceedings
(IEEE, Piscataway, NJ,
2003
), pp.
166
172
.
58.
K. I.
Takeda
,
D.
Ryuzaki
,
T.
Mine
,
K.
Hinode
, and
R.
Yoneyama
, “
Copper-induced dielectric breakdown in silicon oxide deposited by plasma-enhanced chemical vapor deposition using trimethoxysilane
,”
J. Appl. Phys.
94
,
2572
2578
(
2003
).
59.
M.
Vilmay
,
D.
Roy
,
F.
Volpi
, and
J.-M.
Chaix
, “
Characterization of low-κ SiCOH dielectrics for 45nm technology and link between dominant leakage path and the breakdown localization
,”
Microelectron. Eng.
85
,
2075
2078
(
2008
).
60.
R.
Wang
,
K. S.
Liao
,
T. K.
Wang
 et al, “
Electric conduction and TDDB reliability characterization for low-k SiCO dielectrics in Cu interconnects
,”
Thin Solid Films
517
,
1230
1233
(
2008
).
61.
K.
Croes
 et al., “
Low field TDDB of BEOL interconnects using >40 months of data
,” in
International Reliability Physics Symposium Proceedings
, (IEEE, Piscataway, NJ,
2013
), pp.
2F.4.1
2F.4.8
.
62.
E.
Chery
,
X.
Federspiel
,
D.
Roy
,
F.
Volpi
, and
J-M
Chaix
, “
Identification of the (√E + 1/E)-dependence of porous low-k time-dependent dielectric breakdown using over one-year long package levels
,”
Microelectron. Eng.
109
,
90
(
2013
).
63.
E. G.
Liniger
,
S. A.
Cohen
, and
G.
Bonilla
,
“Low-field TDDB reliability data to enable accurate lifetime predictions,” in
International Reliability Physics Symposium
(IEEE, Piscataway, NJ,
2014
), pp. BD.4.1–4.4.
64.
T.
Jeong
,
J.
Kim
,
Y.
Jo
, et al, “
Low voltage IMD-TDDB lifetime model for advanced future logic technology nodes
,” in
International Interconnect Technology Conferences
(IEEE, Piscataway, NJ,
2015
), pp.
299
301
.
65.
M. N.
Chang
,
Y.-H.
Lee
,
S. Y.
Lee
,
K.
Joshi
,
C. C.
Ko
,
C. C.
Chiu
, and
K.
Wu
, “
A new insight into BEOL TDDB lifetime model for advanced technology scaling
,” in
Proceedings of IEDM
(IEEE, Piscataway, NJ,
2015
), p.
165
.
66.
T.
Shen
,
K. B.
Yeap
,
C.
Christiansen
 et al, “
Field acceleration factor in MOL BEOL TDDB
,” in
International Reliability Physics Symposium
(IEEE, Piscataway, NJ,
2017
), pp. G-2.1–2.5.
67.
F.
Griggio
,
J.
Palmer
,
F.
Pan
 et al., “
Reliability of dual-damascene local interconnects featuring cobalt on 10 nm logic technology
,” in
International Reliability Physics Symposium
(IEEE, Piscataway, NJ,
2018
), pp. 6E.3-1–6E.3-5.
68.
J. G.
Simmons
, “
Richardson-Schottky effects in solids
,”
Phys. Rev. Lett.
15
(
25
),
967
968
(
1965
).
69.
P. R.
Emtage
and
J. J.
O’Dwyer
, “
Richardson-Schottky effect in insulators
,”
Phys. Rev. Lett.
16
,
356
(
1966
).
70.
M.
Herrmann
and
A.
Schenk
, “
Field and high-temperature dependence of the long-term charge loss in erasable programmable read only memories: Measurements and modelling
,”
J. Appl. Phys.
77
(
9
),
4522
4540
(
1995
).
71.
F.
Jiménez-Molinos
,
A.
Palma
,
F.
Gámiz
 et al, “
Physical model for trap-assisted inelastic tunneling in metal-oxide-semiconductor structures
,”
J. Appl. Phys.
90
,
3396
(
2001
).
72.
K. A.
Nasyrov
,
S. S.
Shaimeev
,
V. A.
Gritsenko
, and
J. H.
Han
, “
Phonon-coupled trap-assisted charge injection in metal-nitride-oxide silicon/silicon-oxide-nitride-oxide-silicon structures
,”
J. Appl. Phys.
105
,
123709
(
2009
).
73.
L.
Larcher
, “
Statistical simulation of leakage currents in MOS and flash memory devices with a new multiple phonon trap-assisted tunneling model
,”
IEEE Trans. Electron Devices
50
,
1246
(
2003
).
74.
E.
Wu
,
R.
Southwick
,
S.
Mehta
,
B.
Li
, and
M.
Wang
, “
Multiphonon-electron coupling enhanced defect generation and breakdown mechanism in MOL new spacer dielectrics for 7 nm/5 nm technology nodes and beyond
,” in
Proceedings of IEDM
(IEEE, Piscataway, NJ,
2020
), p.
195
.
75.
G.
Jegert
,
D.
Popescu
,
P.
Lugli
,
M. J.
Häufel
, and
W.
Weinreich
, “
Role of defect relaxation for trap-assisted tunneling in high-k thin films: A first-principles kinetic Monte-Carlo study
,”
Phys. Rev. B
85
,
045303
(
2012
).
76.
J. J. M.
van der Holst
,
M. A.
Uijttewaal
,
B.
Ramachandhran
 et al, “
Modeling and analysis of the three-dimensional current density in sandwich-type single carrier devices of disordered organic semiconductors
,”
Phys. Rev. B
79
,
085203
(
2009
).
77.
A.
Padovani
,
D. Z.
Gao
,
A. L.
Shluger
, and
L.
Larcher
, “
A microscopic mechanism of dielectric breakdown in SiO2 films: An insight from multi-scale modeling
,”
J. Appl. Phys.
121
,
155101
(
2017
).
78.
Y.
Xu
,
T.-M.
Lu
, and
J. L.
Plawsky
, “
A transport model describing how defect accumulation leads to intrinsic dielectric breakdown and post-breakdown conduction
,”
Microelectron. Relia.
128
,
114459
(
2022
).
79.
C.
Funck
and
S.
Menzel
, “
An atomistic view on the Schottky barrier lowering applied to SrTiO3/Pt contacts
,”
AIP Adv.
9
,
045116
(
2019
).
80.
S.
Yu
,
X.
Guan
, and
H.-S.
Philip Wong
, “
Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model
,”
Appl. Phys. Lett.
99
,
063507
(
2011
).
81.
S.
Yu
,
R.
Jeyasingh
,
Y.
Wu
, and
H.
Wong
, “
Characterization of low-frequency noise in the resistive switching of transition metal oxide HfO2
,”
Phys. Rev. B
85
,
045324
(
2012
).
82.
Y.
Matveyev
,
K.
Egorov
,
A.
Markeev
, and
A.
Zenkevich
, “
Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO2/TiN devices
,”
J. Appl. Phys.
117
,
044901
(
2015
).
83.
P. L.
Torraca
,
F.
Caruso
,
A.
Padovani
,
S.
Spiga
,
G.
Tallarida
, and
L.
Larcher
, “
Extraction of defect properties in dielectric materials from I-V curve hysteresis
,”
IEEE Electron Device Lett.
42
,
220
223
(
2021
).
84.
T.
Knobloch
,
Y. Y.
Illarionov
,
F.
Ducry
,
C.
Schleich
,
S.
Wachter
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Mueller
,
M.
Waltl
,
M.
Lanza
,
M.
Vexler
,
M.
Luisier
, and
T.
Grasser
, “
The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials
,”
Nat. Electron.
4
(
2
),
98
108
(
2021
).

Supplementary Material

You do not currently have access to this content.