A new set of boundary conditions is proposed for molecular simulations of isolated elastic defects such as dislocations and cracks. The case study of the 111 screw dislocation in body centered cubic (bcc) tungsten, modeled via a phenomenological, n-body cohesion functional, serves validating the new boundary conditions by computing structural properties of this defect and comparing these with results from the literature. Lowest energy configurations of the dislocated crystal have been obtained by molecular statics incorporating the new boundary conditions. The associated displacement and energy landscapes reveal conformal to the predictions of the elastic theory for a screw dislocation embedded in an infinitely extended crystal. In particular, no energy gradients and positional mismatch of atoms are found at the terminations of the computational box, validating thereby the new boundary conditions. Furthermore, it is shown that the structure, the spatial extension, and the excess energy of the two possible core polarizations of this dislocation compare consistently with existing findings for this and other bcc metals. Close to the dislocation line, energy minimization triggers the emergence of anelastic edge displacements extending over distances unexpectedly much larger than the dislocation core radius. Therefore, the conclusion is reached that in molecular simulations, the transverse to the dislocation line dimensions of the atomistic model should be taken considerably larger than it is accustomed. Perspectives opened by the present work are briefly discussed.

1.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Wiley
,
New York
,
1982
).
2.
J.
Friedel
,
Dislocations
(
Pergamon
,
Oxford
,
1964
).
3.
F. R. N.
Nabarro
, “
Dislocations in a simple cubic lattice
,”
Proc. Phys. Soc. London
59
,
256
(
1947
).
4.
A.
Aslanides
and
V.
Pontikis
, “
Atomistic study of dislocation cores in aluminium and copper
,”
Comp. Mat. Sci.
10
,
401
(
1998
).
5.
A.
Aslanides
and
V.
Pontikis
, “
Numerical study of the athermal annihilation of edge-dislocation dipoles
,”
Philos. Mag. A
80
,
2337
(
2000
).
6.
J.
Huang
,
M.
Meyer
, and
V.
Pontikis
, “
Is pipe diffusion in metals vacancy controlled? A molecular-dynamics study of an edge dislocation in copper
,”
Phys. Rev. Lett.
63
,
628
(
1989
).
7.
J.
Huang
,
M.
Meyer
, and
V.
Pontikis
, “
Migration of point defects along a dissociated edge dislocation in copper: A molecular dynamics study
,”
Philos. Mag. A
63
,
1149
(
1991
).
8.
E.
Clouet
,
L.
Ventelon
, and
F.
Willaime
, “
Dislocation core energies and core fields from first principles
,”
Phys. Rev. Lett.
102
,
055502
(
2009
).
9.
S.
Ismail-Beigi
and
T. A.
Arias
, “
Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
,”
Phys. Rev. Lett.
84
,
1499
(
2000
).
10.
C.
Woodward
and
S. I.
Rao
, “
Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta
,”
Phys. Rev. Lett.
88
,
216402
(
2002
).
11.
J.
Boehm
and
R. M.
Nieminen
, “
Molecular-dynamics study of partial edge dislocations in copper and gold: Interactions, structures, and self-diffusion
,”
Phys. Rev. B
53
,
8956
(
1996
).
12.
L.
Ventelon
,
F.
Willaime
,
E.
Clouet
, and
D.
Rodney
, “
Ab initio investigation of the Peierls potential if screw dislocations in bcc Fe and W
,”
Acta Mater.
61
,
3973
(
2013
).
13.
M.-C.
Marinica
,
L.
Ventelon
,
M. R.
Gilbert
,
L.
Proville
,
S. L.
Dudarev
,
J.
Marian
,
G.
Bencteux
, and
F.
Willaime
, “
Interatomic potentials for modelling radiation defects and dislocations in tungsten
,”
J. Phys.: Condens. Matter
25
,
395502
(
2013
).
14.
D.
Cereceda
,
A.
Stukowski
,
M. R.
Gilbert
,
S.
Queyreau
,
L.
Ventelon
,
M.-C.
Marinica
,
J. M.
Perlado
, and
J.
Marian
, “
Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W
,”
J. Phys.: Condens. Matter
25
,
085702
(
2013
).
15.
G.
Lu
and
E.
Kaxiras
, “Overview of multiscale simulations of materials,” in Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth and W. Schommers (American Scientific Publishers, 2005), Vol. X, pp. 1–33.
16.
J. W.
Steeds
,
Introduction to Anisotropic Elasticity Theory of Dislocations
(
Clarendon Press
,
Oxford
,
1973
).
17.
A. K.
Head
, “
The [111] dislocation in a cubic crystal
,”
Phys. Status Solidi B
6
,
641
(
1964
).
18.
G. N.
Savin
,
Stress Concentration Around Holes
(
Pergamon Press
,
Oxford
,
1961
).
19.
G.
Baldinozzi
and
V.
Pontikis
, “
Phenomenological potentials for the refractory metals Cr, Mo and W
,”
J. Phys.: Condens. Matter
34
,
315702
(
2022
).
20.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
21.
Y. S.
Kim
and
R. G.
Gordon
, “
Study of the electron gas approximation
,”
J. Chem. Phys.
60
,
1842
(
2022
).
22.
G.
Frenking
and
N.
Fröhlich
, “
The nature of the bonding in transition metal compounds
,”
Chem. Rev.
100
,
717
(
2000
).
23.
V.
Pontikis
,
G.
Baldinozzi
,
L.
Luneville
, and
D.
Simeone
, “
Near transferable phenomenological n-body potentials for noble metals
,”
J. Phys.: Condens. Matter
29
,
355701
(
2017
).
24.
F.
Ducastelle
, “
Study of the electron gas approximation
,”
J. Phys.
31
,
1055
(
1970
).
25.
J.
Friedel
, “Transitional metals. Electronic structure of the d-band and its role in the crystalline and magnetic structure,” in The Physics of Metals: Volume 1, Electrons, The Physics of Metals, edited by J. M. Ziman (Cambridge University Press, Cambridge, 1969), Chap. 8, pp. 340–408.
26.
S. K.
Lee
and
D. N.
Lee
, “
Calculation of phase diagrams using partial phase diagram data
,”
Calphad
10
,
61
(
1986
).
27.
G.
Simmons
and
H.
Wang
,
Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
, 2nd ed. (
MIT Press
,
Cambridge
,
1971
).
28.
K. A.
Gschneider, Jr.
, “
Physical properties and interrelationships of metallic and semi-metallic elements
,” in
Solid State Physics
, edited by F. Seitz and D. Turnbull (
Academic Press
,
New York
,
1964
), Table XII, Vol. 16, p. 345.
29.
R. C. P. V.
Vitek
and
D. K.
Bowen
, “
Calculation of phase diagrams using partial phase diagram data
,”
Philos. Mag. A
21
,
1049
(
1970
).
30.
T.
Williams
,
C.
Kelley
et al., “Gnuplot 5.4: An interactive plotting program,” see http://gnuplot.sourceforge.net (2021). Note: Grid maps and three-dimensional graphical representations of atom displacements and of sites energies were obtained via the command “set dgrid3d 200,200,2.”
31.
J. R.
Beeler, Jr.
and
G. L.
Kulcinski
, “Agenda discussion: Computer techniques,” in Interatomic Potentials and Simulation of Lattice Defects, edited by P. C. Gehlen, J. R. Beeler, Jr., and R. I. Jaffee (Plenum, New York, 1972), pp. 735–751, ISBN: 978-1-4684-1992-4.
32.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids: Second Edition
(
Oxford University Press
,
Oxford
,
2017
).
33.
E.
Clouet
,
B.
Bienvenu
,
L.
Dezerald
, and
D.
Rodney
, “
Screw dislocations in bcc transition metals: From ab initio modeling to yield criterion
,”
C. R. Phys.
22
,
83
(
2021
).
34.
L.
Ventelon
and
F.
Willaime
, “
Core structure and Peierls potential of screw dislocations in αFe from first principles: Cluster versus dipole approaches
,”
Computer-Aided Mater. Des.
14
,
85
(
2007
).
35.
J. D.
Eshelby
,
W. T.
Read
, and
W.
Shockley
, “
Anisotropic elasticity with applications to dislocation theory
,”
Acta Metall.
1
,
251
(
1953
).
36.
M. S.
Duesbery
and
V.
Vitek
, “
Plastic anisotropy in bcc transition metals
,”
Acta Mater.
46
,
1481
(
1998
).
37.
V.
Vitek
, “Effect of dislocation core structure on the plastic properties of metallic materials,” in Dislocations and Properties of Real Materials, edited by M. H. Lorretto (The Institute of Metals, London, 1985), p. 30.
38.
M. S.
Duesbery
, in Dislocations in Solids-Basic Problems and Applications, edited by F. R. N. Nabarro (North-Holland, Amsterdam, 1989), Vol. 8, pp. 67–173.
39.
M. S.
Duesbery
and
G. Y.
Richardson
, “
The dislocation core in crystalline materials
,”
CRC Crit. Rev. Solid State Mater. Sci.
17
(
1
),
1
(
1991
).
40.
V.
Vitek
, “
Structure of dislocation cores in metallic materials and its impact on their plastic behaviour
,”
Prog. Mater. Sci.
36
,
1
(
1992
).
41.
M. J. Winter, “The orbitron, a gallery of orbitals” (2021), see https://winter.group.shef.ac.uk/orbitron.
You do not currently have access to this content.