This article reports lattice deformation and phase transition of AlScN thin films in the whole composition. AlScN films were deposited on Pt/Ta/SiO2/Si substrates by direct current magnetron reactive sputtering with Al and Sc targets. At Sc concentration up to 30%, AlScN has a wurtzite structure with piezoelectricity. Transition from a wurtzite phase to a two-phase mixture happens between 30% and 35% Sc concentration, and transition from a two-phase mixture to a cubic phase happens between 38% and 43% Sc concentration. The wurtzite structure gradually deforms with the decrease in lattice constant c from 16% to 35% Sc concentration. Lattice constant c at 38% Sc in the two-phase mixture region is larger than that of 35% Sc concentration. These increases mean that distortion of c axis for the wurtzite structure over 35% Sc concentration in the two-phase mixture region is considered to be released and/or eased due to the appearance of the cubic phase, and that Sc concentration of the wurtzite phase to be smaller and that of the cubic phase larger than the film composition measured by energy-dispersive x-ray spectroscopy and Rutherford backscattering spectroscopy. At higher Sc concentration up to 43%, the remained wurtzite phases are replaced by non-piezoelectric cubic phases, and the cubic structure approaches the rock-salt structure of ScN with a further increase in Sc concentration.

1.
R. C.
Turner
,
P. A.
Fuierer
,
R. E.
Newnham
, and
T. R.
Shrout
,
Appl. Accoust.
41
,
299
324
(
1994
).
2.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature
432
,
84
87
(
2004
).
3.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
,
Adv. Mater.
21
,
593
596
(
2009
).
4.
M.
Akiyama
,
K.
Kano
, and
A.
Teshigahara
,
Appl. Phys. Lett.
95
,
162107
(
2009
).
5.
M. D.
Henry
,
T. R.
Young
,
E. A.
Douglas
, and
B. A.
Griffin
,
J. Vac. Sci. Technol. B
36
,
03E104
(
2018
).
6.
K.
Hashimoto
,
S.
Sato
,
A.
Teshigahara
,
T.
Nakamura
, and
K.
Kano
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
637
642
(
2013
).
7.
A.
Ding
,
L.
Kirste
,
Y.
Lu
,
R.
Driad
,
N.
Kurz
,
V.
Lebedev
,
T.
Christoph
,
N. M.
Feil
,
R.
Lozar
,
T.
Metzger
,
O.
Ambacher
, and
A.
Žukauskaitė
,
Appl. Phys. Lett.
116
,
101903
(
2020
).
8.
Q.
Wang
,
Y.
Lu
,
S.
Mishin
,
Y.
Oshmyansky
, and
D. A.
Horsley
,
J. Microelectromech. Syst.
26
,
1132
1139
(
2017
).
9.
E.
Yarar
,
S.
Fichtner
,
P.
Hayes
,
A.
Piorra
,
T.
Reimer
,
T.
Lisec
,
P.
Frank
,
B.
Wagner
,
F.
Lofink
,
D.
Meyners
, and
E.
Quandt
,
J. Microelectromech. Syst.
28
,
1019
1031
(
2019
).
10.
S.
Barth
,
H.
Bartzsch
,
D.
Gloess
,
P.
Frach
,
T.
Herzog
,
S.
Walter
, and
H.
Heuer
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1329
1334
(
2014
).
11.
P. M.
Mayrhofer
,
C.
Rehlendt
,
M.
Fischeneder
,
M.
Kucera
,
E.
Wistrela
,
A.
Bittner
, and
U.
Schmid
,
J. Microelectromech. Syst.
26
,
102
112
(
2017
).
12.
M.
Akiyama
,
K.
Umeda
,
A.
Honda
, and
T.
Nagase
,
Appl. Phys. Lett.
102
,
021915
(
2013
).
13.
H.
Momida
,
A.
Teshigahara
, and
T.
Oguchi
,
AIP Adv.
6
,
065006
(
2016
).
14.
C.
Höglund
,
J.
Birch
,
B.
Alling
,
J.
Bareño
,
Z.
Czigány
,
P. O. A.
Persson
,
G.
Wingqvist
,
A.
Zukauskaite
, and
L.
Hultman
,
J. Appl. Phys.
107
,
123515
(
2010
).
15.
S.
Fichtner
,
N.
Wolff
,
G.
Krishnamurthy
,
A.
Petraru
,
S.
Bohse
,
F.
Lofink
,
S.
Chemnitz
,
H.
Kohlstedt
,
L.
Kienle
, and
B.
Wagner
,
J. Appl. Phys.
122
,
035301
(
2017
).
16.
O.
Zywitzki
,
T.
Modes
,
S.
Barth
,
H.
Bartzsch
, and
P.
Frach
,
Surf. Coat. Technol.
309
,
417
422
(
2017
).
17.
S.
Mertin
,
B.
Heinz
,
O.
Rattunde
,
G.
Mann
,
M. A.
Dubois
,
S.
Nicolay
, and
P.
Muralt
,
Surf. Coat. Technol.
343
,
2
6
(
2018
).
18.
P. M.
Mayrhofer
,
C.
Eisenmenger-Sittner
,
M.
Stöger-Pollach
,
H.
Euchner
,
A.
Bittner
, and
U.
Schmid
,
J. Appl. Phys.
115
,
193505
(
2014
).
19.
R.
Deng
,
S. R.
Evans
, and
D.
Gall
,
Appl. Phys. Lett.
102
,
112103
(
2013
).
20.
R.
Deng
,
K.
Jiang
, and
D.
Gall
,
J. Appl. Phys.
115
,
013506
(
2014
).
21.
F.
Tasnádi
,
B.
Alling
,
C.
Höglund
,
G.
wingqvist
,
J.
Birch
,
L.
Hultman
, and
I. A.
Abrikosov
,
Phys. Rev. Lett.
104
,
137601
(
2010
).
22.
O.
Kitakami
,
S.
Okamoto
, and
Y.
Shimada
,
J. Appl. Phys.
79
,
6880
6883
(
1996
).
23.
N. S.
Vandamme
,
S. M.
Richard
, and
S. R.
Winzer
,
Am. Ceram. Soc.
72
,
1409
1414
(
1989
).
24.
W.
Lengauer
,
J. Solid State Chem.
76
,
412
415
(
1988
).
25.
C.
Höglund
,
J.
Bareño
,
J.
Birch
,
B.
Alling
,
Z.
Czigány
, and
L.
Hultman
,
J. Appl. Phys.
105
,
113517
(
2009
).
26.
C. S.
Sandu
,
F.
Parsapour
,
S.
Mertin
,
V.
Pashchenko
,
R.
Matloub
,
T.
LaGrange
,
B.
Heinz
, and
P.
Muralt
,
Phys. Status Solidi A
216
,
1800569
(
2019
).
27.
K.
Knisely
,
E.
Douglas
,
J.
Mudrick
,
M.
Rodriguez
, and
P.
Kotula
,
Thin Solid Films
675
,
66
72
(
2019
).
28.
S. E.
Boulfelfel
,
D.
Zahn
,
Y.
Grin
, and
S.
Leoni
,
Phys. Rev. Lett.
99
,
125505
(
2007
).
You do not currently have access to this content.