The stacking of few layers of transition metal dichalcogenides (TMDs) and their heterostructures allows us to create new structures, observe new physical phenomena, and envision new applications. Moreover, the twist angle in few-layer TMDs can significantly impact their electrical and optical properties. Therefore, controlling the TMD material and obtaining different stacking orientations when synthesizing TMDs via chemical vapor deposition (CVD) is a powerful tool, which can add functionality to TMD-based optoelectronic devices. Here, we report on the synthesis of few-layer MoS2 and WS2 crystals, as well as their heterobilayer structures with 0° and 60° twist angles between layers via CVD. Raman and photoluminescence spectroscopies demonstrate the quality, crystallinity, and layer count of our grown samples, while second harmonic generation shows that adjacent layers grow with 0° or 60° twist angles, corresponding to two different crystal phases. Our study based on TMDs with different and multiple stacking configurations provides an alternative route for the development of future optoelectronic and nonlinear optical devices.

1.
S.
Das
,
J. A.
Robinson
,
M.
Dubey
,
H.
Terrones
, and
M.
Terrones
, “
Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids
,”
Annu. Rev. Mater. Res.
45
,
1
27
(
2015
).
2.
D.
Akinwande
,
N.
Petrone
, and
J.
Hone
, “
Two-dimensional flexible nanoelectronics
,”
Nat. Commun.
5
,
5678
(
2014
).
3.
N. P.
Rezende
,
A. R.
Cadore
,
A. C.
Gadelha
,
C. L.
Pereira
,
V.
Ornelas
,
K.
Watanabe
,
T.
Taniguchi
,
A. S.
Ferlauto
,
A.
Malachias
,
L. C.
Campos
, and
R. G.
Lacerda
, “
Probing the electronic properties of monolayer MoS2 via interaction with molecular hydrogen
,”
Adv. Electron. Mater.
5
,
1800591
(
2019
).
4.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
150
(
2011
), arXiv:0402594v3 [arXiv:cond-mat].
5.
G. J.
Orchin
,
D.
De Fazio
,
A.
Di Bernardo
,
M.
Hamer
,
D.
Yoon
,
A. R.
Cadore
,
I.
Goykhman
,
K.
Watanabe
,
T.
Taniguchi
,
J. W.
Robinson
,
R. V.
Gorbachev
,
A. C.
Ferrari
, and
R. H.
Hadfield
, “
Niobium diselenide superconducting photodetectors
,”
Appl. Phys. Lett.
114
,
251103
(
2019
), arXiv:1903.02528.
6.
R. I.
Woodward
,
R. T.
Murray
,
C. F.
Phelan
,
R. E. P.
de Oliveira
,
T. H.
Runcorn
,
E. J. R.
Kelleher
,
S.
Li
,
E. C.
de Oliveira
,
G. J. M.
Fechine
,
G.
Eda
, and
C. J. S.
de Matos
, “
Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy
,”
2D Mater.
4
,
011006
(
2016
), arXiv:1606.08093.
7.
H. G.
Rosa
,
Y. W.
Ho
,
I.
Verzhbitskiy
,
M. J.
Rodrigues
,
T.
Taniguchi
,
K.
Watanabe
,
G.
Eda
,
V. M.
Pereira
, and
J. C.
Gomes
, “
Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide
,”
Sci. Rep.
8
,
10035
(
2018
), arXiv:1803.01647.
8.
L.
Lafeta
,
A.
Corradi
,
T.
Zhang
,
E.
Kahn
,
I.
Bilgin
,
B. R.
Carvalho
,
S.
Kar
,
M.
Terrones
, and
L. M.
Malard
, “
Second and third-order optical susceptibilities across excitons states in 2D monolayer transition metal dichalcogenides
,”
2D Mater.
8
,
035010
(
2021
).
9.
I.
Paradisanos
,
G.
Wang
,
E. M.
Alexeev
,
A. R.
Cadore
,
X.
Marie
,
A. C.
Ferrari
,
M. M.
Glazov
, and
B.
Urbaszek
, “
Efficient phonon cascades in WSe2 monolayers
,”
Nat. Commun.
12
,
1
7
(
2021
).
10.
V.
Carozo
,
K.
Fujisawa
,
R.
Rao
,
E.
Kahn
,
J. R.
Cunha
,
T.
Zhang
,
D.
Rubin
,
M. F.
Salazar
,
A.
De Luna Bugallo
,
S.
Kar
, and
M.
Terrones
, “
Excitonic processes in atomically-thin MoSe2/MoS2 vertical heterostructures
,”
2D Mater.
5
,
031016
(
2018
).
11.
B.
Shabbir
,
M.
Nadeem
,
Z.
Dai
,
M. S.
Fuhrer
,
Q. K.
Xue
,
X.
Wang
, and
Q.
Bao
, “
Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies
,”
Appl. Phys. Rev.
5
,
041105
(
2018
).
12.
R. J.
Peña Román
,
Y.
Auad
,
L.
Grasso
,
F.
Alvarez
,
I. D.
Barcelos
, and
L. F.
Zagonel
, “
Tunneling-current-induced local excitonic luminescence in p-doped WSe2 monolayers
,”
Nanoscale
12
,
13460
13470
(
2020
).
13.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C. Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
,
1271
1275
(
2010
).
14.
M. J.
Park
,
J. K.
Min
,
S. G.
Yi
,
J. H.
Kim
,
J.
Oh
, and
K. H.
Yoo
, “
Near-infrared photodetectors utilizing MoS2-based heterojunctions
,”
J. Appl. Phys.
118
,
044504
(
2015
).
15.
F.
Gong
,
H.
Fang
,
P.
Wang
,
M.
Su
,
Q.
Li
,
J. C.
Ho
,
X.
Chen
,
W.
Lu
,
L.
Liao
,
J.
Wang
, and
W.
Hu
, “
Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions
,”
Nanotechnology
28
,
484002
(
2017
).
16.
A. C.
Gadelha
,
A. R.
Cadore
,
K.
Watanabe
,
T.
Taniguchi
,
A. M.
De Paula
,
L. M.
Malard
,
R. G.
Lacerda
, and
L. C.
Campos
, “
Gate-tunable non-volatile photomemory effect in MoS2 transistors
,”
2D Mater.
6
,
025036
(
2019
), arXiv:2006.09986.
17.
W.
Choi
,
N.
Choudhary
,
G. H.
Han
,
J.
Park
,
D.
Akinwande
, and
Y. H.
Lee
, “
Recent development of two-dimensional transition metal dichalcogenides and their applications
,”
Mater. Today
20
,
116
130
(
2017
), arXiv:1403.4270.
18.
M. H.
Zeb
,
B.
Shabbir
,
R. U. R.
Sagar
,
N.
Mahmood
,
K.
Chen
,
I.
Qasim
,
M. I.
Malik
,
W.
Yu
,
M. M.
Hossain
,
Z.
Dai
,
Q.
Ou
,
M. A.
Bhat
,
B. N.
Shivananju
,
Y.
Li
,
X.
Tang
,
K.
Qi
,
A.
Younis
,
Q.
Khan
,
Y.
Zhang
, and
Q.
Bao
, “
Superior magnetoresistance performance of hybrid graphene foam/metal sulfide nanocrystal devices
,”
ACS Appl. Mater. Interf.
11
,
19397
19403
(
2019
).
19.
M. M.
Hossain
,
B.
Shabbir
,
Y.
Wu
,
W.
Yu
,
V.
Krishnamurthi
,
H.
Uddin
,
N.
Mahmood
,
S.
Walia
,
Q.
Bao
,
T.
Alan
, and
S.
Mokkapati
, “
Ultrasensitive WSe2 field-effect transistor-based biosensor for label-free detection of cancer in point-of-care applications
,”
2D Mater.
8
,
045005
(
2021
).
20.
G.
Liu
,
X.
Bao
,
W.
Dong
,
Q.
Wei
,
H.
Mu
,
W.
Zhu
,
B.
Wang
,
J.
Li
,
B.
Shabbir
,
Y.
Huang
,
G.
Xing
,
J.
Yu
,
P.
Gao
,
H.
Shao
,
X.
Li
, and
Q.
Bao
, “
Two-dimensional Bi2Sr2CaCu2O8+δ nanosheets for ultrafast photonics and optoelectronics
,”
ACS Nano
15
,
8919
8929
(
2021
).
21.
A.
Grillo
,
M.
Passacantando
,
A.
Zak
,
A.
Pelella
, and
A.
Di Bartolomeo
, “
WS2 nanotubes: Electrical conduction and field emission under electron irradiation and mechanical stress
,”
Small
16
,
1
9
(
2020
).
22.
A.
Di Bartolomeo
,
A.
Pelella
,
F.
Urban
,
A.
Grillo
,
L.
Iemmo
,
M.
Passacantando
,
X.
Liu
, and
F.
Giubileo
, “
Field emission in ultrathin PdSe2 back-gated transistors
,”
Adv. Electron. Mater.
6
,
1
7
(
2020
).
23.
B.
Tang
,
B.
Che
,
M.
Xu
,
Z. P.
Ang
,
J.
Di
,
H.-J.
Gao
,
H.
Yang
,
J.
Zhou
, and
Z.
Liu
, “
Recent advances in synthesis and study of 2D twisted transition metal dichalcogenide bilayers
,”
Small Struct.
2
,
2000153
(
2021
).
24.
Q.
Zeng
and
Z.
Liu
, “
Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures
,”
Adv. Electron. Mater.
4
,
1700335
(
2018
).
25.
T.
Sun
,
W.
Ma
,
D.
Liu
,
X.
Bao
,
B.
Shabbir
,
J.
Yuan
,
S.
Li
,
D.
Wei
, and
Q.
Bao
, “
Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection
,”
J. Semicond.
41
,
072907
(
2020
).
26.
B.
Kim
,
J.
Kim
,
P. C.
Tsai
,
H.
Choi
,
S.
Yoon
,
S. Y.
Lin
, and
D. W.
Kim
, “
Large surface photovoltage of WS2/MoS2 and MoS2/WS2 vertical hetero-bilayers
,”
ACS Appl. Electron. Mater.
3
,
2601
2606
(
2021
).
27.
A. R.
Cadore
,
R. D.
Oliveira
, and
R.
Longuinhos
, “
Exploring the structural and optoelectronic properties of natural insulating phlogopite in van der Waals heterostructures
,”
2D Mater.
9
,
035007
(
2022
).
28.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
10453
(
2005
).
29.
A. R.
Montblanch
,
D. M.
Kara
,
I.
Paradisanos
,
C. M.
Purser
,
M. S.
Feuer
,
E. M.
Alexeev
,
L.
Stefan
,
Y.
Qin
,
M.
Blei
,
G.
Wang
,
A. R.
Cadore
,
P.
Latawiec
,
M.
Lončar
,
S.
Tongay
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures
,”
Commun. Phys.
4
,
1
8
(
2021
), arXiv:2005.02416.
30.
I.
Paradisanos
,
S.
Shree
,
A.
George
,
N.
Leisgang
,
C.
Robert
,
K.
Watanabe
,
T.
Taniguchi
,
R. J.
Warburton
,
A.
Turchanin
,
X.
Marie
,
I. C.
Gerber
, and
B.
Urbaszek
, “
Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition
,”
Nat. Commun.
11
,
1
7
(
2020
), arXiv:2001.08914.
31.
R.
Frisenda
,
E.
Navarro-Moratalla
,
P.
Gant
,
D.
Pérez De Lara
,
P.
Jarillo-Herrero
,
R. V.
Gorbachev
, and
A.
Castellanos-Gomez
, “
Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials
,”
Chem. Soc. Rev.
47
,
53
68
(
2018
).
32.
S. H.
Safeer
,
T. L.
Vasconcelos
,
B. S.
Oliveira
,
B. S.
Archanjo
,
M.
Nazarkovsky
,
C.
Vilani
,
F. L.
Freire
, and
V.
Carozo
, “
Etching-free transfer and nanoimaging of CVD-grown MoS2 monolayers
,”
J. Phys. Chem. C
125
,
21011
21017
(
2021
).
33.
A.
Tuxen
,
J.
Kibsgaard
,
H.
Gøbel
,
E.
Lægsgaard
,
H.
Topsøe
,
J. V.
Lauritsen
, and
F.
Besenbacher
, “
Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters
,”
ACS Nano
4
,
4677
4682
(
2010
).
34.
K. H.
Ibrahim
,
M.
Irannejad
,
B.
Wales
,
J.
Sanderson
,
M.
Yavuz
, and
K. P.
Musselman
, “
Simultaneous fabrication and functionalization of nanoparticles of 2D materials with hybrid optical properties
,”
Adv. Opt. Mater.
6
,
1
7
(
2018
).
35.
Z.
Lin
,
M. T.
Thee
,
A. L.
Elías
,
S.
Feng
,
C.
Zhou
,
K.
Fujisawa
,
N.
Perea-López
,
V.
Carozo
,
H.
Terrones
, and
M.
Terrones
, “
Facile synthesis of MoS2 and MoxW1xS2 triangular monolayers
,”
APL Mater.
2
,
092514
(
2014
).
36.
X.
Wang
,
Y.
Gong
,
S.
Gang
,
W.
Chow
,
W.
Keyshar
,
G.
Ye
,
R.
Vajtai
,
J.
Lou
,
Z.
Liu
,
E.
Ringe
,
B.
Tay
, and
P.
Ajayan
, “
Chemical vapor deposition growth of crystalline monolayer MoSe2
,”
ACS Nano
8
,
5125
5131
(
2014
).
37.
Y. H.
Lee
,
X. Q.
Zhang
,
W.
Zhang
,
M. T.
Chang
,
C. T.
Lin
,
K. D.
Chang
,
Y. C.
Yu
,
J. T.
Wang
,
C. S.
Chang
,
L. J.
Li
, and
T. W.
Lin
, “
Synthesis of large-area MoS2 atomic layers with chemical vapor deposition
,”
Adv Mater
24
,
2320
2325
(
2012
).
38.
S. H.
Safeer
,
M. V. O.
Moutinho
,
A. R. J.
Barreto
,
B. S.
Archanjo
,
O. G.
Pandoli
,
M.
Cremona
,
M. E.
da Costa
,
F. L.
Freire
, and
V.
Carozo
, “
Sodium-mediated low-temperature synthesis of monolayers of molybdenum disulfide for nanoscale optoelectronic devices
,”
ACS Appl. Nano Mater.
4
,
4172
4180
(
2021
).
39.
W. F.
Zhao
,
H.
Yu
,
M. Z.
Liao
,
L.
Zhang
,
S. Z.
Zou
,
H. J.
Yu
,
C. J.
He
,
J. Y.
Zhang
,
G. Y.
Zhang
, and
X. C.
Lin
, “
Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking
,”
Semicond. Sci. Technol.
32
,
025013
(
2017
).
40.
I.
Bilgin
,
F.
Liu
,
A.
Vargas
,
A.
Winchester
,
M. K.
Man
,
M.
Upmanyu
,
K. M.
Dani
,
G.
Gupta
,
S.
Talapatra
,
A. D.
Mohite
, and
S.
Kar
, “
Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality
,”
ACS Nano
9
,
8822
8832
(
2015
), arXiv:1504.04888.
41.
C.
Coletti
,
M.
Romagnoli
,
M. A.
Giambra
,
V.
Mišeikis
,
S.
Pezzini
,
S.
Marconi
,
A.
Montanaro
,
F.
Fabbri
,
V.
Sorianello
, and
A. C.
Ferrari
, “
Wafer-scale integration of graphene-based photonic devices
,”
ACS Nano
15
,
3171
3187
(
2021
), arXiv:2012.05816.
42.
F. B.
Sousa
,
L.
Lafeta
,
A. R.
Cadore
,
P. K.
Sahoo
, and
L. M.
Malard
, “
Revealing atomically sharp interfaces of two-dimensional lateral heterostructures by second harmonic generation
,”
2D Mater.
8
,
035051
(
2021
).
43.
T.
Zhang
and
L.
Fu
, “
Controllable chemical vapor deposition growth of two-dimensional heterostructures
,”
Chem
4
,
671
689
(
2018
).
44.
H.
Ye
,
J.
Zhou
,
D.
Er
,
C. C.
Price
,
Z.
Yu
,
Y.
Liu
,
J.
Lowengrub
,
J.
Lou
,
Z.
Liu
, and
V. B.
Shenoy
, “
Toward a mechanistic understanding of vertical growth of van der Waals stacked 2D materials: A multiscale model and experiments
,”
ACS Nano
11
,
12780
12788
(
2017
).
45.
S. V.
Mandyam
,
M. Q.
Zhao
,
P.
Masih Das
,
Q.
Zhang
,
C. C.
Price
,
Z.
Gao
,
V. B.
Shenoy
,
M.
Drndić
, and
A. T.
Johnson
, “
Controlled growth of large-area bilayer tungsten diselenides with lateral P-N junctions
,”
ACS Nano
13
,
10490
10498
(
2019
).
46.
C.
Ruppert
,
O. B.
Aslan
, and
T. F.
Heinz
, “
Optical properties and band gap of single- and few-layer MoTe2 crystals
,”
Nano Lett.
14
,
6231
6236
(
2014
).
47.
R.
Shahzad
,
T. W.
Kim
, and
S. W.
Kang
, “
Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis
,”
Thin Solid Films
641
,
79
86
(
2017
).
48.
T.
Jiang
,
H.
Liu
,
D.
Huang
,
S.
Zhang
,
Y.
Li
,
X.
Gong
,
Y. R.
Shen
,
W. T.
Liu
, and
S.
Wu
, “
Valley and band structure engineering of folded MoS2 bilayers
,”
Nat. Nanotechnol.
9
,
825
829
(
2014
).
49.
W. T.
Hsu
,
Z. A.
Zhao
,
L. J.
Li
,
C. H.
Chen
,
M. H.
Chiu
,
P. S.
Chang
,
Y. C.
Chou
, and
W. H.
Chang
, “
Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers
,”
ACS Nano
8
,
2951
2958
(
2014
).
50.
R.
Suzuki
,
M.
Sakano
,
Y. J.
Zhang
,
R.
Akashi
,
D.
Morikawa
,
A.
Harasawa
,
K.
Yaji
,
K.
Kuroda
,
K.
Miyamoto
,
T.
Okuda
,
K.
Ishizaka
,
R.
Arita
, and
Y.
Iwasa
, “
Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry
,”
Nat. Nanotechnol.
9
,
611
617
(
2014
).
51.
S. M.
Shinde
,
K. P.
Dhakal
,
X.
Chen
,
W. S.
Yun
,
J.
Lee
,
H.
Kim
, and
J. H.
Ahn
, “
Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2
,”
NPG Asia Mater.
10
,
1
13
(
2018
).
52.
M.
Tebyetekerwa
,
J.
Zhang
,
S. E.
Saji
,
A. A.
Wibowo
,
S.
Rahman
,
T. N.
Truong
,
Y.
Lu
,
Z.
Yin
,
D.
Macdonald
, and
H. T.
Nguyen
, “
Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers
,”
Cell Reports Phys. Sci.
2
,
100509
(
2021
).
53.
F.
Zhang
,
K.
Momeni
,
M. A.
AlSaud
,
A.
Azizi
,
M. F.
Hainey
,
J. M.
Redwing
,
L. Q.
Chen
, and
N.
Alem
, “
Controlled synthesis of 2D transition metal dichalcogenides: From vertical to planar MoS2
,”
2D Mater.
4
,
025029
(
2017
).
54.
B.
Shi
,
D.
Zhou
,
S.
Fang
,
K.
Djebbi
,
S.
Feng
,
H.
Zhao
,
C.
Tlili
, and
D.
Wang
, “
Facile and controllable synthesis of large-area monolayer WS2 flakes based on WO3 precursor drop-casted substrates by chemical vapor deposition
,”
Nanomaterials
9
,
578
(
2019
).
55.
Q.
Fu
,
W.
Wang
,
L.
Yang
,
J.
Huang
,
J.
Zhang
, and
B.
Xiang
, “
Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition
,”
RSC Adv.
5
,
15795
15799
(
2015
).
56.
J.
You
,
M. D.
Hossain
, and
Z.
Luo
, “
Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology
,”
Nano Convergence
5
,
26
(
2018
).
57.
K.
Ostrikov
,
X.
Zhang
,
S.
Xiao
,
H.
Nan
,
H.
Mo
,
X.
Wan
, and
X.
Gu
, “
Controllable one-step growth of bilayer MoS2-WS2/WS2 heterostructures by chemical vapor deposition
,”
Nanotechnology
29
,
455707
(
2018
).
58.
Q.
Zhang
,
X.
Xiao
,
R.
Zhao
,
D.
Lv
,
G.
Xu
,
Z.
Lu
,
L.
Sun
,
S.
Lin
,
X.
Gao
,
J.
Zhou
,
C.
Jin
,
F.
Ding
, and
L.
Jiao
, “
Two-dimensional layered heterostructures synthesized from core-shell nanowires
,”
Angew. Chem.
54
,
8957
8960
(
2015
).
59.
X.
Wu
,
X.
Wang
,
H.
Li
,
Z.
Zeng
,
B.
Zheng
,
D.
Zhang
,
F.
Li
,
X.
Zhu
,
Y.
Jiang
, and
A.
Pan
, “
Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties
,”
Nano Res.
12
,
3123
3128
(
2019
).
60.
G.
Yin
,
D.
Zhu
,
D.
Lv
,
A.
Hashemi
,
Z.
Fei
,
F.
Lin
,
A. V.
Krasheninnikov
,
Z.
Zhang
,
H. P.
Komsa
, and
C.
Jin
, “
Hydrogen-assisted post-growth substitution of tellurium into molybdenum disulfide monolayers with tunable compositions
,”
Nanotechnology
29
,
145603
(
2018
).
61.
Y.
Gong
,
Z.
Lin
,
G.
Ye
,
G.
Shi
,
S.
Feng
,
Y.
Lei
,
A. L.
Elías
,
N.
Perea-Lopez
,
R.
Vajtai
,
H.
Terrones
,
Z.
Liu
,
M.
Terrones
, and
P. M.
Ajayan
, “
Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers
,”
ACS Nano
9
,
11658
11666
(
2015
), arXiv:arXiv:1011.1669v3.
62.
A. N.
Barbosa
,
N. S.
Figueroa
,
M.
Giarola
,
G.
Mariotto
, and
F. L.
Freire
, “
Straightforward identification of monolayer WS2 structures by Raman spectroscopy
,”
Mater. Chem. Phys.
243
,
122599
(
2020
).
63.
A. C.
Gadelha
,
A. R.
Cadore
,
L.
Lafeta
,
A. M.
De Paula
,
L. M.
Malard
,
R. G.
Lacerda
, and
L. C.
Campos
, “
Local photodoping in monolayer MoS2
,”
Nanotechnology
31
,
255701
(
2020
), arXiv:2006.09513.
64.
J.
Yan
,
J.
Xia
,
X.
Wang
,
L.
Liu
,
J. L.
Kuo
,
B. K.
Tay
,
S.
Chen
,
W.
Zhou
,
Z.
Liu
, and
Z. X.
Shen
, “
Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry
,”
Nano Lett.
15
,
8155
8161
(
2015
).
65.
A.
Yan
,
W.
Chen
,
C.
Ophus
,
J.
Ciston
,
Y.
Lin
,
K.
Persson
, and
A.
Zettl
, “
Identifying different stacking sequences in few-layer CVD-grown MoS2 by low-energy atomic-resolution scanning transmission electron microscopy
,”
Phys. Rev. B
93
,
041420(R)
(
2016
).
66.
J.
Ribeiro-Soares
,
R. M.
Almeida
,
E. B.
Barros
,
P. T.
Araujo
,
M. S.
Dresselhaus
,
L. G.
Cançado
, and
A.
Jorio
, “
Group theory analysis of phonons in two-dimensional transition metal dichalcogenides
,”
Phys. Rev. B
115438
,
115438
(
2014
), arXiv:1407.1226.
67.
Z.
Gao
,
M. Q.
Zhao
,
M. M.
Alam Ashik
, and
A. T.
Charlie Johnson
, “
Recent advances in the properties and synthesis of bilayer graphene and transition metal dichalcogenides
,”
J. Phys. Mater.
3
,
042003
(
2020
).
68.
H.
Terrones
,
E.
Del Corro
,
S.
Feng
,
J. M.
Poumirol
,
D.
Rhodes
,
D.
Smirnov
,
N. R.
Pradhan
,
Z.
Lin
,
M. A.
Nguyen
,
A. L.
Elías
,
T. E.
Mallouk
,
L.
Balicas
,
M. A.
Pimenta
, and
M.
Terrones
, “
New first order raman-active modes in few layered transition metal dichalcogenides
,”
Sci. Rep.
4
,
4215
(
2014
).
69.
H. R.
Gutiérrez
,
N.
Perea-López
,
A. L.
Elías
,
A.
Berkdemir
,
B.
Wang
,
R.
Lv
,
F.
López-Urías
,
V. H.
Crespi
,
H.
Terrones
, and
M.
Terrones
, “
Extraordinary room-temperature photoluminescence in triangular WS2monolayers
,”
Nano Lett.
13
,
3447
3454
(
2013
), arXiv:1208.1325.
70.
L.
Liang
and
V.
Meunier
, “
First-principles Raman spectra of MoS2, WS2 and their heterostructures
,”
Nanoscale
6
,
5394
5401
(
2014
).
71.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
, “
From bulk to monolayer MoS2: Evolution of Raman scattering
,”
Adv. Funct. Mater.
22
,
1385
1390
(
2012
).
72.
S.
Xiao
,
P.
Xiao
,
X.
Zhang
,
D.
Yan
,
X.
Gu
,
F.
Qin
,
Z.
Ni
,
Z. J.
Han
, and
K. K.
Ostrikov
, “
Atomic-layer soft plasma etching of MoS2
,”
Sci. Rep.
6
,
1
8
(
2016
).
73.
J. K.
Ellis
,
M. J.
Lucero
, and
G. E.
Scuseria
, “
The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory
,”
Appl. Phys. Lett.
99
,
261908
(
2011
).
74.
Y.
Yu
,
Y.
Yu
,
C.
Xu
,
Y. Q.
Cai
,
L.
Su
,
Y.
Zhang
,
Y. W.
Zhang
,
K.
Gundogdu
, and
L.
Cao
, “
Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers
,”
Adv. Funct. Mater.
26
,
4733
4739
(
2016
).
75.
K.
Kojima
,
H. E.
Lim
,
Z.
Liu
,
W.
Zhang
,
T.
Saito
,
Y.
Nakanishi
,
T.
Endo
,
Y.
Kobayashi
,
K.
Watanabe
,
T.
Taniguchi
,
K.
Matsuda
,
Y.
Maniwa
,
Y.
Miyauchi
, and
Y.
Miyata
, “
Restoring the intrinsic optical properties of CVD-grown MoS2 monolayers and their heterostructures
,”
Nanoscale
11
,
12798
12803
(
2019
).
76.
A. A.
Puretzky
,
L.
Liang
,
X.
Li
,
K.
Xiao
,
B. G.
Sumpter
,
V.
Meunier
, and
D. B.
Geohegan
, “
Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency raman spectroscopy
,”
ACS Nano
10
,
2736
2744
(
2016
).
77.
S.
Zheng
,
L.
Sun
,
X.
Zhou
,
F.
Liu
,
Z.
Liu
,
Z.
Shen
, and
H. J.
Fan
, “
Coupling and interlayer exciton in twist-stacked WS2 bilayers
,”
Adv. Opt. Mater.
3
,
1600
1605
(
2015
).
78.
M.
O’Brien
,
N.
McEvoy
,
D.
Hanlon
,
T.
Hallam
,
J. N.
Coleman
, and
G. S.
Duesberg
, “
Mapping of low-frequency raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects
,”
Sci. Rep.
6
,
1
11
(
2016
).
79.
H. R.
Gutierrez
,
N.
Perea-Lopez
,
A. L.
Elias
,
A.
Berkdemir
,
B.
Wang
,
R.
Lv
,
F.
Lopez-Urias
,
V. H.
Crespi
,
H.
Terrones
, and
M.
Terrones
, “
Extraordinary room-temperature photoluminescence in WS2 triangular monolayers
,”
Nano Lett.
13
,
3447
3454
(
2012
), arXiv:1208.1325.
80.
A.
Berkdemir
,
H. R.
Gutiérrez
,
A. R.
Botello-Méndez
,
N.
Perea-López
,
A. L.
Elías
,
C. I.
Chia
,
B.
Wang
,
V. H.
Crespi
,
F.
López-Urías
,
J. C.
Charlier
,
H.
Terrones
, and
M.
Terrones
, “
Identification of individual and few layers of WS2 using Raman spectroscopy
,”
Sci. Rep.
3
,
1
8
(
2013
).
81.
E.
Del Corro
,
A.
Botello-Méndez
,
Y.
Gillet
,
A. L.
Elias
,
H.
Terrones
,
S.
Feng
,
C.
Fantini
,
D.
Rhodes
,
N.
Pradhan
,
L.
Balicas
,
X.
Gonze
,
J. C.
Charlier
,
M.
Terrones
, and
M. A.
Pimenta
, “
Atypical exciton-phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy
,”
Nano Lett.
16
,
2363
2368
(
2016
).
82.
W.
Zhao
,
Z.
Ghorannevis
,
L.
Chu
,
M.
Toh
,
C.
Kloc
,
P.-H.
Tan
, and
G.
Ed
, “
Evolution of electronic structure in atomically thin sheets of WS2 and WSe2
,”
ACS Nano
7
,
791
797
(
2013
).
83.
L.
Yuanzheng
,
L.
Xinshu
,
Y.
Tong
,
Y.
Guochun
,
C.
Heyu
,
Z.
Cen
,
F.
Qiushi
,
M.
Jiangang
,
L.
Weizhen
,
X.
Haiyang
,
L.
Yichun
, and
L.
Xinfeng
, “
Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study
,”
Nanotechnology
29
,
124001
(
2018
).
84.
B.
Zhu
,
X.
Chen
, and
X.
Cui
, “
Exciton binding energy of monolayer WS2
,”
Sci. Rep.
5
,
9218
(
2015
), arXiv:1403.5108.
85.
S.
Pak
,
J.
Lee
,
Y. W.
Lee
,
A. R.
Jang
,
S.
Ahn
,
K. Y.
Ma
,
Y.
Cho
,
J.
Hong
,
S.
Lee
,
H. Y.
Jeong
,
H.
Im
,
H. S.
Shin
,
S. M.
Morris
,
S.
Cha
,
J. I.
Sohn
, and
J. M.
Kim
, “
Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer
,”
Nano Lett.
17
,
5634
5640
(
2017
).
86.
J.
Shan
,
J.
Li
,
X.
Chu
,
M.
Xu
,
F.
Jin
,
X.
Fang
,
Z.
Wei
, and
X.
Wang
, “
Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures
,”
Appl. Surf. Sci.
443
,
31
38
(
2018
).
87.
K. P.
Dhakal
,
S.
Roy
,
H.
Jang
,
X.
Chen
,
W. S.
Yun
,
H.
Kim
,
J.
Lee
,
J.
Kim
, and
J. H.
Ahn
, “
Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides
,”
Chem. Mater.
29
,
5124
5133
(
2017
).
88.
H.
Heo
,
J. H.
Sung
,
S.
Cha
,
B. G.
Jang
,
J. Y.
Kim
,
G.
Jin
,
D.
Lee
,
J. H.
Ahn
,
M. J.
Lee
,
J. H.
Shim
,
H.
Choi
, and
M. H.
Jo
, “
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
,”
Nat. Commun.
6
,
7372
(
2015
).
89.
E. M.
Alexeev
,
A.
Catanzaro
,
O. V.
Skrypka
,
P. K.
Nayak
,
S.
Ahn
,
S.
Pak
,
J.
Lee
,
J. I.
Sohn
,
K. S.
Novoselov
,
H. S.
Shin
, and
A. I.
Tartakovskii
, “
Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope
,”
Nano Lett.
17
,
5342
5349
(
2017
), arXiv:1612.07969.
90.
K.
Wang
,
B.
Huang
,
M.
Tian
,
F.
Ceballos
,
M. W.
Lin
,
M.
Mahjouri-Samani
,
A.
Boulesbaa
,
A. A.
Puretzky
,
C. M.
Rouleau
,
M.
Yoon
,
H.
Zhao
,
K.
Xiao
,
G.
Duscher
, and
D. B.
Geohegan
, “
Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy
,”
ACS Nano
10
,
6612
6622
(
2016
).
91.
Y.
Yu
,
S.
Hu
,
L.
Su
,
L.
Huang
,
Y.
Liu
,
Z.
Jin
,
A. A.
Purezky
,
D. B.
Geohegan
,
K. W.
Kim
,
Y.
Zhang
, and
L.
Cao
, “
Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures
,”
Nano Lett.
15
,
486
491
(
2015
).
92.
Y.
Chen
,
D. O.
Dumcenco
,
Y.
Zhu
,
X.
Zhang
,
N.
Mao
,
Q.
Feng
,
M.
Zhang
,
J.
Zhang
,
P. H.
Tan
,
Y. S.
Huang
, and
L.
Xie
, “
Composition-dependent Raman modes of Mo1xWxS2 monolayer alloys
,”
Nanoscale
6
,
2833
2839
(
2014
).
93.
K.
Bogaert
,
S.
Liu
,
T.
Liu
,
N.
Guo
,
C.
Zhang
,
S.
Gradečak
, and
S.
Garaj
, “
Two-dimensional MoxW1xS2 graded alloys: Growth and optical properties
,”
Sci. Rep.
8
,
2
8
(
2018
).
94.
J. S.
Kim
,
S. T.
Moran
,
A. P.
Nayak
,
S.
Pedahzur
,
I.
Ruiz
,
G.
Ponce
,
D.
Rodriguez
,
J.
Henny
,
J.
Liu
,
J. F.
Lin
, and
D.
Akinwande
, “
High pressure Raman study of layered Mo0.5W0.5S2 ternary compound
,”
2D Mater.
3
,
025003
(
2016
).
95.
Y.
Gao
,
J.
Liu
,
X.
Zhang
, and
G.
Lu
, “
Unraveling structural and optical properties of two-dimensional MoxW1xS2 alloys
,”
J. Phys. Chem. C
125
,
774
781
(
2021
).
96.
L. M.
Malard
,
T. V.
Alencar
,
A. P. M.
Barboza
,
K. F.
Mak
, and
A. M.
De Paula
, “
Observation of intense second harmonic generation from MoS2 atomic crystals
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
87
,
1
5
(
2013
).
97.
R.
Cunha
,
A.
Cadore
,
S. L.
Ramos
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Kim
,
A. S.
Solntsev
,
I.
Aharonovich
, and
L. M.
Malard
, “
Second harmonic generation in defective hexagonal boron nitride
,”
J. Phys.: Condens. Matter
32
,
185301
(
2020
).
98.
P. G.
Vianna
,
A. D. S.
Almeida
,
R. M.
Gerosa
,
D. A.
Bahamon
, and
C. J.
De Matos
, “
Second-harmonic generation enhancement in monolayer transition-metal dichalcogenides by using an epsilon-near-zero substrate
,”
Nanoscale Adv.
3
,
272
278
(
2021
).
99.
N.
Kumar
,
S.
Najmaei
,
Q.
Cui
,
F.
Ceballos
,
P. M.
Ajayan
,
J.
Lou
, and
H.
Zhao
, “
Second harmonic microscopy of monolayer MoS2
,”
Phys. Rev. B - Condens. Matter Mater. Phys.
87
,
161403(R)
(
2013
), arXiv:1302.3935.
100.
Y.
Li
,
Y.
Rao
,
K. F.
Mak
,
Y.
You
,
S.
Wang
,
C. R.
Dean
, and
T. F.
Heinz
, “
Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation
,”
Nano Lett.
13
,
3329
3333
(
2013
).
101.
Y. C.
Kim
,
H.
Yoo
,
V. T.
Nguyen
,
S.
Lee
,
J.-Y.
Park
, and
Y. H.
Ahn
, “
High-speed imaging of second-harmonic generation in MoS2 bilayer under femtosecond laser ablation
,”
Nanomaterials
11
,
1786
(
2021
).
102.
C.-K.
Chou
,
W.-L.
Chen
,
P. T.
Fwu
,
S.-J.
Lin
,
H.-S.
Lee
, and
C.-Y.
Dong
, “
Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation
,”
J. Biomed. Opt.
13
,
014005
(
2008
).
103.
L.
Mouchliadis
,
S.
Psilodimitrakopoulos
,
G. M.
Maragkakis
,
I.
Demeridou
,
G.
Kourmoulakis
,
A.
Lemonis
,
G.
Kioseoglou
, and
E.
Stratakis
, “
Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
,”
npj 2D Mater. Appl.
5
,
6
(
2021
), arXiv:2006.14857.
104.
M.
Zhao
,
Z.
Ye
,
R.
Suzuki
,
Y.
Ye
,
H. Y.
Zhu
,
J.
Xiao
,
Y.
Wang
,
Y.
Iwasa
, and
X.
Zhang
, “
Atomically phase-matched second-harmonic generation in a 2D crystal
,”
Light
5
,
e16131
(
2016
).
105.
A.
Autere
,
H.
Jussila
,
A.
Marini
,
J. R. M.
Saavedra
,
Y.
Dai
,
A.
Säynätjoki
,
L.
Karvonen
,
H.
Yang
,
B.
Amirsolaimani
,
R. A.
Norwood
,
N.
Peyghambarian
,
H.
Lipsanen
,
K.
Kieu
,
F. J. G.
de Abajo
, and
Z.
Sun
, “
Optical harmonic generation in monolayer group-VI transition metal dichalcogenides
,”
Phys. Rev. B
98
,
115426
(
2018
).

Supplementary Material

You do not currently have access to this content.