This paper discusses the use of electron backscattered diffraction to characterize restructuring in a set of UO2 samples, irradiated in a pressurized water reactor at a burn-up between 35 and 73 GWd/tU, including standard UO2 samples and Cr-doped UO2 samples, to provide a better understanding of restructuring occurring both on the periphery and in the center of high-burn-up pellets. The formation of a high burn-up structure on the periphery of high burn-up UO2 was confirmed in our experiment. We found restructuring associated with bubble formation of all the samples in the central area, with higher irradiation temperatures when the burn-up exceeded 61 GWd/tU, regardless of their initial microstructure. This restructuring tended to progress with the increasing burn-up and to sub-divide the initial grains into sub-grains, with orientations close to that of the parent grains. Radial changes and differences between these samples showed that the burn-up and the temperature were not the only relevant parameters involved in restructuring.

1.
K.
Nogita
and
K.
Une
,
Nucl. Instrum. Methods Phys. Res., Sect. B
91
,
301
306
(
1994
).
2.
K.
Nogita
and
K.
Une
,
J. Nucl. Mater.
226
,
302
310
(
1995
).
3.
J.
Spino
,
K.
Vennix
, and
M.
Coquerelle
,
J. Nucl. Mater.
231
,
179
190
(
1996
).
4.
H.
Matzke
and
M.
Kinoshita
,
J. Nucl. Mater.
247
,
108
115
(
1997
).
5.
H.
Matzke
and
J.
Spino
,
J. Nucl. Mater.
248
,
170
179
(
1997
).
6.
K.
Nogita
,
K.
Une
,
M.
Hirai
,
K.
Ito
,
K.
Ito
, and
Y.
Shirai
,
J. Nucl. Mater.
248
,
196
203
(
1997
).
7.
K.
Une
,
M.
Hirai
,
K.
Nogita
,
T.
Hosokawa
,
Y.
Suzawa
,
S.
Shimizu
, and
Y.
Etoh
,
J. Nucl. Mater.
278
,
54
63
(
2000
).
8.
J.
Spino
and
D.
Papaioannou
,
J. Nucl. Mater.
281
,
146
162
(
2000
).
9.
T.
Sonoda
,
M.
Kinoshita
,
I. L. F.
Ray
,
T.
Wiss
,
H.
Thiele
,
D.
Pellottiero
,
V. V.
Rondinella
, and
H.
Matzke
,
Nucl. Instrum. Methods Phys. Res., Sect. B
191
,
622
628
(
2002
).
10.
J.
Spino
,
A. D.
Stalios
,
H.
Santa Cruz
, and
D.
Baron
,
J. Nucl. Mater.
354
,
66
84
(
2006
).
11.
J.
Noirot
,
L.
Desgranges
, and
J.
Lamontagne
,
J. Nucl. Mater.
372
,
318
339
(
2008
).
12.
D.
Baron
,
M.
Kinoshita
,
P.
Thevenin
, and
R.
Largenton
,
Nucl. Eng. Technol.
41
,
199
214
(
2009
).
13.
J.
Noirot
,
I.
Aubrun
,
L.
Desgranges
,
K.
Hanifi
,
J.
Lamontagne
,
B.
Pasquet
,
C.
Valot
,
P.
Blanpain
, and
H.
Cognon
,
Nucl. Eng. Technol.
41
,
155
162
(
2009
).
14.
V. V.
Rondinella
and
T.
Wiss
,
Mater. Today
13
,
24
32
(
2010
).
15.
S.
Bengtsson
, in
AIEA Tech. Committee Meet. Adv. Pellet Technol. Improv. Perform. High Burn., Tokyo
(IAEA,
1996
), pp.
149
160
.
16.
D.
Jädernäs
,
F.
Corleoni
,
A.
Puranen
,
M.
Granfors
,
G.
Lysell
,
P.
Tejland
,
D. D.
Lutz
, and
L.
Hallstadius
, in
Topfuel, Charlotte, NC
(ANS,
2013
).
17.
T. J.
Gerczak
,
C. M.
Parish
,
P. D.
Edmondson
,
C. A.
Baldwin
, and
K. A.
Terrani
,
J. Nucl. Mater.
509
,
245
259
(
2018
).
18.
J.
Noirot
,
I.
Zacharie-Aubrun
, and
T.
Blay
,
Nucl. Eng. Technol.
50
,
259
267
(
2018
).
19.
F.
Cappia
,
K.
Wright
,
D.
Frazer
,
K.
Bawane
,
B.
Kombaiah
,
W.
Williams
,
S.
Finkeldei
,
F.
Teng
,
J.
Giglio
,
M. N.
Cinbiz
,
B.
Hilton
,
J.
Strumpell
,
R.
Daum
,
K.
Yueh
,
C.
Jensen
, and
D.
Wachs
,
J. Nucl. Mater.
569
,
153881
(
2022
).
20.
M.
Teague
,
B.
Gorman
,
B.
Miller
, and
J.
King
,
J. Nucl. Mater.
444
,
475
480
(
2014
).
21.
D.
Frazer
,
F.
Cappia
,
J. M.
Harp
,
P. G.
Medvedev
,
K. J.
McClellan
,
S. L.
Voit
,
J.
Giglio
,
D.
Jädernäs
, and
P.
Hosemann
,
J. Nucl. Mater.
562
,
153545
(
2022
).
22.
J.
Noirot
,
L.
Noirot
,
L.
Desgranges
,
J.
Lamontagne
,
T.
Blay
,
B.
Pasquet
, and
E.
Muller
, in
Proceedings of the 2004 International Meeting on LWR Fuel Performance
(ANS,
2004
), pp.
329
338
.
23.
R.
Dowek
,
Les Gaz de Fission Dans Les Combustibles REP Irradiés
(
Un État Détaillé à Fort Taux de Combustion
,
2021
).
24.
J.
Noirot
,
R.
Dowek
,
I.
Zacharie-Aubrun
,
T.
Blay
, and
M.
Cabié
, “Restructuring in high burn-up pressurized water reactor UO2 fuel central parts: Experimental 3D characterization by focused ion beam—scanning electron microscopy,”
J. Appl. Phys.
132, 195902 (2022).
25.
ISO 13383-1:2012
, “Fine ceramics (advanced ceramics, advanced technical ceramics)—Microstrutural characterization—Part 1: Determination of grain size and size distribution” (2012).
26.
B.
Michel
,
I.
Ramière
,
I.
Viallard
,
C.
Introini
,
M.
Lainet
,
N.
Chauvin
,
V.
Marelle
,
A.
Boulore
,
T.
Helfer
,
R.
Masson
,
J.
Sercombe
,
J. C.
Dumas
,
L.
Noirot
, and
S.
Bernaud
,
Two Fuel Performance Codes of the PLEIADES Platform: ALCYONE and GERMINAL
(Woodhead Publishing,
2020
).
27.
V.
Marelle
,
P.
Goldbronn
,
S.
Bernaud
,
E.
Castelier
,
J.
Julien
,
K.
Nkonga
,
I.
Ramiere
,
V.
Marelle
,
P.
Goldbronn
,
S.
Bernaud
,
E.
Castelier
,
J.
Julien
,
V.
Marelle
,
P.
Goldbronn
,
S.
Bernaud
,
E.
Castelier
,
J.
Julien
,
K.
Nkonga
,
L.
Noirot
, and
I.
Ramière
, in
Topfuel, Boise, ID, USA
(ANS,
2020
).
28.
I.
Zacharie-Aubrun
,
T.
Blay
,
C.
Ciszak
,
C.
Cagna
, and
S.
Chalal
, in
NuMat, Montpellier, France
(Elsevier, 2016).
29.
I.
Zacharie-Aubrun
and
T.
Blay
, in
Topfuel, Karlsruhe, Germany
(ANS,
2016
).
30.
M.
Ben Saada
,
N.
Gey
,
B.
Beausir
,
X.
Iltis
,
H.
Mansour
, and
N.
Malou
,
Mater. Charact.
133
,
112
121
(
2017
).
31.
F.
Bachmann
,
R.
Hielscher
, and
H.
Schaeben
,
Solid State Phenom.
160
,
63
68
(
2010
).
32.
J. K.
Mackenzie
,
Biometrika
45
,
229
240
(
1958
).
33.
F. J.
Humphreys
,
J. Mater. Sci.
36
,
3833
3854
(
2001
).
34.
T.
Wiss
,
Radiation Effects in UO2
(
Elsevier Inc.
,
2012
).
35.
J.
Noirot
,
Y.
Pontillon
,
S.
Yagnik
, and
J. A.
Turnbull
,
J. Nucl. Mater.
462
,
77
84
(
2015
).
You do not currently have access to this content.