Focussed ion beam - scanning electron microscope (FIB-SEM) 3D examination was conducted on three standard UO2 and one Cr doped UO2 high burn-up pressurized water reactor (PWR) fuel samples. This work complemented other microanalysis examination, including an electron backscattered diffraction (EBSD) work on the polished surface. A parallel article giving the EBSD results was submitted simultaneously. Together, they found, in all the central area of these high burn-up samples: (i) a restructuring of the initial grains into smaller sub-grains forming low angle boundaries and with crystal orientations around that of their parent grains; and (ii) intragranular bubbles mostly situated on these low angle boundaries. The FIB-SEM 3D examination showed how such inter-sub-grain bubbles start as small compact but also small lenticular bubbles, similar to typical small intergranular lenticular bubbles. With increasing burn-up, these lenticular bubbles get thicker and locally interlink to form more complex bubbles. However, no long distance networks, between the sub-grains or between the original grains, were found. Such networks could have been a path for part of the fission gases to reach the grain boundaries, the grain edges (the intersection line of three grain boundaries), and the rod free volumes. These FIB-SEM 3D examinations brought details on the intragranular and intergranular bubbles situation for each studied volume. The distribution of the intragranular bubbles according to their sizes and shapes was exposed. The central restructuring, studied in this work, is likely to play a role in the increase of the fission gas release fractions at high burn-up. This work is an incentive to study further this restructuring and the bubbles formed, combining different approaches.

1.
L. E.
Thomas
, in
Fundamental Aspects of Inert Gases in Solids
, edited by
S. E.
Donnelly
and
J. H.
Evans
(
Plenum
,
New-York
,
1991
).
2.
S.
Kashibe
,
K.
Une
, and
K.
Nogita
,
J. Nucl. Mater.
206
(
1
),
22
(
1993
).
3.
J. A.
Turnbull
,
J. Nucl. Mater.
38
(
2
),
203
(
1971
).
4.
M.
Mogensen
,
C. T.
Walker
,
I. L. F.
Ray
, and
M.
Coquerelle
,
J. Nucl. Mater.
131
(
2
),
162
(
1985
).
5.
C.
Baker
and
J. C.
Killeen
, in
International Conference on Materials for Nuclear Reactor Core Applications
(
BNES
,
Bristol
,
1987
).
6.
I.
Zacharie
,
S.
Lansiart
,
P.
Combette
,
M.
Trotabas
,
M.
Coster
, and
M.
Groos
,
J. Nucl. Mater.
255
(
2–3
),
92
(
1998
).
7.
S.
Valin
,
A.
Mocellin
,
G.
Eminet
, and
S.
Ravel
, in
Fission Gas Behaviour in Water Reactor Fuels
, edited by
NEA
(
OCDE
,
Cadarache
,
2000
), Vol. NEA #03053, p.
357
.
8.
R. J.
White
,
J. Nucl. Mater.
325
(
1
),
61
(
2004
).
9.
J.
Noirot
,
C.
Gonnier
,
L.
Desgranges
,
Y.
Pontillon
, and
J.
Lamontagne
, IAEA-TECDOC-CD-1635,
2009
.
10.
M. A.
Barker
,
C. P.
Chatwin
, and
S. L.
Owens
,
in Proceedings of the Water Reactor Fuel Performance Meeting WRFPM / Top Fuel
,
Paris, France
(
2009
).https://inis.iaea.org/search/search.aspx?orig_q=RN:40094908
11.
J.
Noirot
,
Y.
Pontillon
,
S.
Yagnik
, and
J. A.
Turnbull
,
J. Nucl. Mater.
462
(
0
),
77
(
2015
).
12.
K.
Nogita
and
K.
Une
,
Nucl. Instrum. Methods Phys. Res. B
91
(
1
),
301
(
1994
).
13.
K.
Nogita
and
K.
Une
,
J. Nucl. Mater.
226
(
3
),
302
(
1995
).
14.
J.
Spino
,
K.
Vennix
, and
M.
Coquerelle
,
J. Nucl. Mater.
231
(
3
),
179
(
1996
).
15.
H. J.
Matzke
and
J.
Spino
,
J. Nucl. Mater.
248
(
0
),
170
(
1997
).
16.
K.
Nogita
and
K.
Une
,
J. Nucl. Mater.
250
(
2–3
),
244
(
1997
).
17.
M.
Kinoshita
,
T.
Kameyama
,
S.
Kitajima
, and
H. J.
Matzke
,
J. Nucl. Mater.
252
(
1
),
71
(
1998
).
18.
J.
Spino
,
A. D.
Stalios
,
H.
Santa Cruz
, and
D.
Baron
,
J. Nucl. Mater.
354
(
1–3
),
66
(
2006
).
19.
J.
Noirot
,
L.
Desgranges
, and
J.
Lamontagne
,
J. Nucl. Mater.
372
(
2–3
),
318
(
2008
).
20.
D.
Baron
,
M.
Kinoshita
,
P.
Thevenin
, and
R.
Largenton
,
Nucl. Eng. Technol.
41
(
2
),
199
(
2009
).
21.
T.
Wiss
,
V. V.
Rondinella
,
R. J. M.
Konings
,
D.
Staicu
,
D.
Papaioannou
,
S.
Bremier
,
P.
Pöml
,
O.
Benes
,
J.-Y.
Colle
,
P.
Van Uffelen
,
A.
Schubert
,
F.
Cappia
,
M.
Marchetti
,
D.
Pizzocri
,
F.
Jatuff
,
W.
Goll
,
T.
Sonoda
,
A.
Sasahara
,
S.
Kitajima
, and
M.
Kinoshita
,
Radiochim. Acta
105
(
11
),
893
(
2017
).
22.
F.
Cappia
,
D.
Pizzocri
,
M.
Marchetti
,
A.
Schubert
,
P.
Van Uffelen
,
L.
Luzzi
,
D.
Papaioannou
,
R.
Macián-Juan
, and
V. V.
Rondinella
,
J. Nucl. Mater.
479
,
447
(
2016
).
23.
F.
Cappia
,
D.
Pizzocri
,
A.
Schubert
,
P.
Van Uffelen
,
G.
Paperini
,
D.
Pellottiero
,
R.
Macián-Juan
, and
V. V.
Rondinella
,
J. Nucl. Mater.
480
,
138
(
2016
).
24.
T. J.
Gerczak
,
C. M.
Parish
,
P. D.
Edmondson
,
C.
Baldwin
, and
K. A.
Terrani
,
J. Nucl. Mater.
509
,
245
(
2018
).
25.
J.
Noirot
,
Y.
Pontillon
,
S.
Yagnik
,
J. A.
Turnbull
, and
T.
Tverberg
,
J. Nucl. Mater.
446
(
1–3
),
163
(
2014
).
26.
NEA/CSNI/R(2016)16, 2016.
27.
J.
Noirot
,
T.
Blay
,
J.
Lamontagne
,
L.
Fayette
,
Y.
Pontillon
, and
X.
Pujol
, in
LOCA Workshop, Fuel Fragmentation, Relocation and Dispersal (FFRD)—Experimental Basis, Mechanisms and Modelling Approaches
(HRP-WGFS (halden reactor project Working Group on Fuel Safety) OECD NEA,
Aix-en-Provence
,
2015
), see https://hal-cea.archives-ouvertes.fr/cea-01599153
28.
Y.
Yan
,
J.
Harp
,
K.
Linton
, and
N.
Brown
,
TopFuel
(
Santander
,
2021
).
29.
T.
Narukawa
and
Y.
Udagawa
,
TopFuel
(
Santander
,
2021
).
30.
P.
Guedeney
,
M.
Trotabas
,
M.
Boschiero
, and
C.
Forat
, in
International Topical Meeting on LWR Fuel Performance
(ANS ENS (American Nuclear Society/ European Nuclear Society),
Avignon
,
1991
).
31.
R.
Manzel
,
F.
Sontheimer
, and
R.
Würtz
,
J. Nucl. Mater.
126
(
2
),
132
(
1984
).
32.
J.
Noirot
,
L.
Noirot
,
L.
Desgranges
,
J.
Lamontagne
,
T.
Blay
,
B.
Pasquet
, and
E.
Muller
,
in Proceedings of ANS International Topical Meeting on LWR Fuel Performance, Topfuel ANS
(
Orlando
,
FL
,
2004
).
33.
J.
Noirot
,
I.
Zacharie-Aubrun
,
L.
Desgranges
,
K.
Hanifi
,
J.
Lamontagne
,
B.
Pasquet
,
C.
Valot
,
P.
Blanpain
, and
H.
Cognon
,
Nucl. Eng. Technol.
41
(
2
),
155
(
2009
).
34.
J.
Noirot
,
I.
Zacharie-Aubrun
, and
T.
Blay
,
Nucl. Eng. Technol.
50
(
2
),
259
(
2018
).
35.
D.
Jädernäs
,
F.
Corleoni
,
A.
Puranen
,
M.
Granfors
,
G.
Lysell
,
P.
Tejland
,
D.
Lutz
, and
L.
Hallstadius
,
in Proceedings of ANS International Topical Meeting on LWR Fuel Performance, Topfuel ANS
(
Charlotte
,
NC
,
2013
).
36.
F.
Cappia
,
K.
Wright
,
D.
Frazer
,
K.
Bawane
,
B.
Kombaiah
,
W.
Williams
,
S.
Finkeldei
,
F.
Teng
,
J.
Giglio
,
M. N.
Cinbiz
,
B.
Hilton
,
J.
Strumpell
,
R.
Daum
,
K.
Yueh
,
C.
Jensen
, and
D.
Wachs
,
J. Nucl. Mater.
569
,
153881
(
2022
).
37.
C.
McKinney
,
R.
Seibert
,
G.
Helmreich
,
A.
Aitkaliyeva
, and
K.
Terrani
,
J. Nucl. Mater.
532
,
152053
(
2020
).
38.
I.
Zacharie
,
R.
Dowek
,
J.
Noirot
,
T.
Blay
,
M.
Cabié
, and
M.
Dumont
, “Restructuring in high burn-up UO2 fuels: experimental characterization by electron backscattered diffraction,”
J. Appl. Phys.
(to be published).
39.
B.
Michel
,
I.
Ramière
,
I.
Viallard
,
C.
Introini
,
M.
Lainet
,
N.
Chauvin
,
V.
Marelle
,
A.
Boulore
,
T.
Helfer
,
R.
Masson
,
J.
Sercombe
,
J. C.
Dumas
,
L.
Noirot
, and
S.
Bernaud
,
Nuclear Power Plant Design and Analysis Codes
(
Woodhead Publishing
,
Elsevier
,
2020
), p.
207
.
40.
V.
Marelle
,
P.
Goldbronn
,
S.
Bernaud
,
E.
Castelier
,
J.
Julien
,
K.
Nkonga
,
L.
Noirot
, and
I.
Ramière
,
in Proceedings of ANS International Topical Meeting on LWR Fuel Performance, Topfuel ANS
(
Boise
,
ID
,
2016
).
41.
I.
Zacharie-Aubrun
,
T.
Blay
,
C.
Ciszak
,
C.
Cagna
, and
S.
Chalal
,
NuMat
(Elsevier,
Montpellier
,
2016
).
42.
I.
Zacharie-Aubrun
and
T.
Blay
,
Hotlab
(
2016
).
43.
L.
Holzer
,
F.
Indutnyi
,
P. H.
Gasser
,
B.
Münch
, and
M.
Wegmann
,
J. Microsc.
216
(
1
),
84
(
2004
).
44.
J. R.
Wilson
,
W.
Kobsiriphat
,
R.
Mendoza
,
H.-Y.
Chen
,
J. M.
Hiller
,
D. J.
Miller
,
K.
Thornton
,
P. W.
Voorhees
,
S. B.
Adler
, and
S. A.
Barnett
,
Nat. Mater.
5
(
7
),
541
(
2006
).
45.
J.
Schindelin
,
C. T.
Rueden
,
M. C.
Hiner
, and
K. W.
Eliceiri
,
Mol. Reprod. Dev.
82
(
7–8
),
518
(
2015
).
46.
C. T.
Rueden
,
J.
Schindelin
,
M. C.
Hiner
,
B. E.
DeZonia
,
A. E.
Walter
,
E. T.
Arena
, and
K. W.
Eliceiri
,
BMC Bioinf.
18
(
1
),
529
(
2017
).
47.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.-Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
,
Nat. Methods
9
(
7
),
676
(
2012
).
48.
K.
Li
, see http://www.cs.cmu.edu/∼kangli/code/Image_Stabilizer.html for information about the image stabilizer code (2008).
49.
B.
Münch
,
L. H. J.
Martin
, and
A.
Leemann
,
J. Microsc.
260
(
3
),
411
(
2015
).
50.
D.
Legland
,
I.
Arganda-Carreras
, and
P.
Andrey
,
Bioinformatics
32
(
22
),
3532
(
2016
).
51.
R.
Domander
,
A.
Felder
, and
M.
Doube
,
Wellcome Open Res.
6
(
37
) (
2021
).https://wellcomeopenresearch.org/articles/6-37
52.
S.
Berg
,
D.
Kutra
,
T.
Kroeger
,
C. N.
Straehle
,
B. X.
Kausler
,
C.
Haubold
,
M.
Schiegg
,
J.
Ales
,
T.
Beier
,
M.
Rudy
,
K.
Eren
,
J. I.
Cervantes
,
B.
Xu
,
F.
Beuttenmueller
,
A.
Wolny
,
C.
Zhang
,
U.
Koethe
,
F. A.
Hamprecht
, and
A.
Kreshuk
,
Nat. Methods
16
(
12
),
1226
(
2019
).
53.
R.
Kikinis
,
S. D.
Pieper
, and
K. G.
Vosburgh
, in
Intraoperative Imaging and Image-Guided Therapy
, edited by
F. A.
Jolesz
(
Springer
,
New York
,
2014
), p.
277
.
54.
A.
Fedorov
,
R.
Beichel
,
J.
Kalpathy-Cramer
,
J.
Finet
,
J.-C.
Fillion-Robin
,
S.
Pujol
,
C.
Bauer
,
D.
Jennings
,
F.
Fennessy
,
M.
Sonka
,
J.
Buatti
,
S.
Aylward
,
J. V.
Miller
,
S.
Pieper
, and
R.
Kikinis
,
Magn. Reson. Imaging
30
(
9
),
1323
(
2012
).
55.
M. W.
Crofton
,
Philos. Trans. R. Soc. London
158
,
181
(
1968
).
56.
G.
Lehmann
and
D.
Legland
,
Insight J.
January-December (
2012
).
57.
J.
Rest
,
M. W. D.
Cooper
,
J.
Spino
,
J. A.
Turnbull
,
P.
Van Uffelen
, and
C. T.
Walker
,
J. Nucl. Mater.
513
,
310
(
2019
).
58.
S. T.
Murphy
,
P.
Fossati
, and
R. W.
Grimes
,
J. Nucl. Mater.
466
,
634
(
2015
).
You do not currently have access to this content.