Magnetic After-Effect (MAE) and magnetic AC susceptibility studies have been performed on high-purity non-irradiated and Fe-ion irradiated, α-Fe foil samples in the high-temperature range, which became experimentally accessible recently. The pronounced difference in the temperature profile of MAE between non-irradiated and irradiated samples has been identified and ascribed to the trapping of carbon in the irradiated sample into structures that are reluctant to decompose by standard temperature cycling. The accurate background of MAE relaxations at 430 and 610 K in non-irradiated α-Fe samples has been scrutinized by the annealing-type studies in temperature and time domains to conclude that it relies on the formation, decomposition, and mutual transformations of carbide nanoprecipitates nucleated in dislocations, grain boundaries, and in the bcc matrix. Long-term trapping of migrating carbon into carbides and in the 100 nm thick surface layer has also been shown to take place.

1.
L.
Malerba
,
M. J.
Caturla
,
E.
Gaganidze
,
C.
Kaden
,
M.
Konstantinović
et al., “
Multiscale modelling for fusion and fission materials: The M4F project
,”
Nucl. Mater. Energy
29
,
101051
(
2018
).
2.
A.
Zinkle
,
H.
Muroga
,
S. J.
Möslang
, and
T.
Tanigawa
, “
Multimodal options for materials research to advance the basis for fusion energy in the ITER era
,”
Nucl. Fusion
53
,
104024
(
2013
).
3.
H. J.
Blythe
,
H.
Kronmüller
,
A.
Seeger
, and
F.
Walz
, “
A review of the magnetic relaxation and its application to the study of atomic defects in a-iron and its diluted alloys, and references therein
,”
Phys. Stat. Sol. A
181
,
233
(
2000
).
4.
M.
Konstantinović
,
M.
Prester
,
D.
Drobac
, and
N.
Novosel
, “
Magnetic after-effect study of carbon distribution and grain boundary diffusion in FeCrC alloys and steels
,”
Phys. Status Solidi A
219
,
2200103
(
2022
).
5.
W.
Köster
,
L.
Banbert
, and
R.
Hahn
, “
Das dämpfungsverhalten von gerecktem technischem eisen
,”
Arch. Eisenhutten.
25
,
569
(
1955
).
6.
T.
, “
On the physical models of the cold-work (Snoek-Koester) internal-friction peaks in BCC metals
,”
Scr. Metallurg.
16
,
225
(
1982
).
7.
E. C.
Bain
and
H. W.
Paxton
,
Alloying Elements in Steel
(
American Society for Metals
,
1961
).
8.
M.
Takahashi
, “
Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry
,”
ISIJ Int.
55
,
79
(
2015
).
9.
C. A.
Wert
, “
Precipitation from solid solutions of C and N in α-iron
,”
J. Appl. Phys.
20
,
943
(
1949
).
10.
A. H.
Cottrell
and
B. A.
Bilby
, “
Dislocation theory of yielding and strain ageing of iron
,”
Proc. Phys. Soc.
A62
,
49
(
1949
).
11.
J. M.
Papazian
and
D.
Besherb
, “
Grain boundary segregation of carbon in iron
,”
Metall. Mater. Trans.
B2
,
497
503
(
1971
).
12.
O. A.
Restrepo
,
C. S.
Becquart
,
F.
El-Mellouhi
,
O.
Bouhali
, and
N.
Mousseau
, “
Diffusion mechanisms of C in 100, 110 and 111 Fe surfaces studied using kinetic activation-relaxation technique
,”
Acta Mater.
136
,
303
314
(
2017
).
13.
M.
Roldán
,
P.
Fernández
,
R.
Vilam
,
A.
Gomez-Herrero
, and
F. J.
Sánchez
, “
The effect of triple ion beam irradiation on cavity formation on pure EFDA iron
,”
J. Nucl. Mater.
479
,
100
(
2016
).
14.
See www.cryobind.com for more information about AC susceptibility system used in this study.
15.
Z.
Siketić
,
I. B.
Radović
, and
M.
Jakšić
, “
Development of a time-of-flight spectrometer at the Ruđder Bošković Institute in Zagreb
,”
Nucl. Instrum. Meth. Phys. Res. Sect. B
266
,
1328
(
2008
).
16.
Z.
Siketić
,
I. B.
Radović
, and
M.
Jakšić
, “
Quantitative analysis of hydrogen in thin films using TOF-ERDA spectroscopy
,”
Thin Solid Films
518
,
2617
2622
(
2010
).
17.
K.
Arstila
,
J.
Julin
,
M.
Laitinen
,
J.
Aalto
,
T.
Konu
,
S.
Karkkainen
,
S.
Rahkonen
,
M.
Raunio
,
J.
Itkonen
,
J.-P.
Santanen
,
T.
Tuovinen
, and
T.
Sajavaara
, “
Potku-new analysis software for heavy ion elastic recoil detection analysis
,”
Nucl. Instrum. Meth. B
331
,
34
41
(
2014
).
18.
M.
Roldán
,
P.
Fernández
,
R.
Vila
,
A.
Gómez-Herrero
, and
F.
Sánchez
, “
The effect of triple ion beam irradiation on cavity formation on pure EFDA iron
,”
J. Nucl. Mater.
479
,
100
111
(
2016
).
19.
C. M.
Fang
,
M. F.
Sluiter
,
M. A.
van Huis
,
C. K.
Ande
, and
H. W.
Zandbergen
, “
Origin of predominance of cementite among iron carbides in steel at elevated temperature
,”
Phys. Rev. Lett.
105
,
055503
(
2010
).
20.
D. C.
Jiles
, “
Magnetic properties and microstructure of AISI 1000 series carbon steels
,”
J. Phys. D.: Appl. Phys.
21
,
1186
1195
(
1988
).
21.
D.
Jiles
,
Introduction to Magnetism and Magnetic Materials
(
CRC Press
,
2015
).
22.
M.
Kersten
,
Theory of Ferromagnetic Hysteresis and Coercivity
(
Hirzel
,
Stuttgart
,
1943
).
23.
K.
Abiko
and
H.
Kimura
, “
Nucleation of ϵ-phase precipitates in α-iron
,”
Trans. Japan Inst. Metals
17
,
383
391
(
1976
).
24.
H. K. D. H.
Bhadeshia
, “
Cementite
,”
Int. Mater. Rev.
65
,
1
27
(
2020
).
25.
C.
Barouh
,
T.
Schuler
,
C. C.
Fu
, and
M.
Nastar
, “
Interaction between vacancies and interstitial solutes (C, N, and O) in α-Fe: From electronic structure to thermodynamics
,”
Phys. Rev. B
90
,
054112
(
2014
).
26.
J. D.-E.
Bruce
and
L.
Bramfitt
,
Metals Handbook Desk Edition
, 2nd ed. (
ASM International
,
1999
), pp.
153
173
.
27.
R.
Abbaschian
and
R. E.
Reed-Hill
,
Physical Metallurgy Principles
(
Cengage Learning
,
2009
).
28.
M.
Krzyzanowski
,
J. H.
Beynon
, and
D. C. J.
Farrugia
,
Oxide Scale Behavior in High Temperature Metal Processing
(
Wiley-VCH
,
2010
).
29.
G. S.
Was
,
S.
Taller
,
Z.
Jiao
,
A. M.
Monterrosa
,
D.
Woodley
,
D.
Jennings
,
T.
Kubley
,
F.
Naab
,
O.
Toader
, and
E.
Uberseder
, “
Resolution of the carbon contamination problem in ion irradiation experiments
,”
Nucl. Inst. Methods Phys. Res.
B412
,
58
65
(
2017
).
30.
Physical Metallurgy, 5th ed., edited by D. E. Laughlin and K. H. (Elsevier, 2014).
31.
L.
Ventelon
,
B.
Lüthi
,
E.
Clouet
,
L.
Proville
,
B.
Legrand
,
D.
Rodney
, and
F.
Willaime
, “
Dislocation core reconstruction induced by carbon segregation in BCC iron
,”
PRB
91
,
220102(R)
(
2015
).
32.
J.
Takahashi
,
M.
Sugiyama
, and
N.
Maruyama
, “
Quantitative observation of grain boundary carbon segregation in bake-hardening steels
,”
Nippon Steel Techn. Rep.
91
,
28
33
(
2005
).
33.
N. R.
Rhodes
,
M. A.
Tschopp
, and
K. N.
Solanki
, “
Quantifying the energetics and length scales of carbon segregation to α-Fe symmetric tilt grain boundaries using atomistic simulations
,”
Modell. Simul. Mater. Sci. Eng.
21
,
035009
(
2013
).
34.
R.
Doremus
, “
The role of dislocations in carbide precipitation in α-iron
,”
Acta Metall.
6
,
674
679
(
1958
).
35.
A.
De
,
S.
Vandeputte
, and
B. D.
Cooman
, “
Kinetics of low temperature precipitation in a ULC-bake hardening steel
,”
Scr. Mater.
44
,
695
700
(
2001
).
36.
D.
Raabe
,
M.
Herbig
,
S.
Sandlöbes
,
Y.
Li
,
D.
Tytko
,
M.
Kuzmina
,
D.
Pnge
, and
P.-P.
Choi
, “
Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces
,”
Curr. Opin. Solid State Mater. Sci.
18
,
253
(
2014
).
37.
T.
Cao
,
C.
Cheng
,
F.
Ye
,
H.
Xv
, and
J.
Zhao
, “
Relationship between carbon segregation and the carbide precipitation along grain boundary based on the structural unit model
,”
J. Mater. Sci.
55
,
7883
(
2020
).
38.
M.
Taneike
,
F.
Abe
, and
K.
Sawada
, “
Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions
,”
Nature
424
,
294
296
(
2003
).
You do not currently have access to this content.