Numerically validated analytical predictions for electro-osmosis over a charged surface decorated with a nanoscale groove pattern are developed for the situation when the electrical double layer thickness is comparable to the spatial period of the grooves. For the analytical predictions, the groove shape can be specified by any continuous periodic function, such as the triangular, trapezoidal, and sinusoidal waveforms, which are investigated as special cases. We discover that the classical Helmholtz–Smoluchowski expression for electrokinetic mobility, notwithstanding its widespread use in measurements, is rendered invalid by the presence of Debye-length-scale unevenness in the surface topography. Furthermore, we use the depth-resolved anisotropic response of oblique grooves to design and optimize a novel electro-microfluidic strategy for separating constituents of a nano-particulate mixture.

1.
W.
Sparreboom
,
A.
van den Berg
, and
J. C.
Eijkel
, “
Principles and applications of nanofluidic transport
,”
Nat. Nanotechnol.
4
,
713
720
(
2009
).
2.
E.
Boyko
,
V.
Bacheva
,
M.
Eigenbrod
,
F.
Paratore
,
A. D.
Gat
,
S.
Hardt
, and
M.
Bercovici
, “
Microscale hydrodynamic cloaking and shielding via electro-osmosis
,”
Phys. Rev. Lett.
126
,
184502
(
2021
).
3.
X.
Xuan
, “
Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications
,”
Electrophoresis
40
,
2484
2513
(
2019
).
4.
L.
Shang
,
F.
Ye
,
M.
Li
, and
Y.
Zhao
, “
Spatial confinement toward creating artificial living systems
,”
Chem. Soc. Rev.
51
,
4075
4093
(
2022
).
5.
A. L.
Dubov
,
T. Y.
Molotilin
, and
O. I.
Vinogradova
, “
Continuous electroosmotic sorting of particles in grooved microchannels
,”
Soft Matter
13
,
7498
7504
(
2017
).
6.
S.
Choi
and
J.-K.
Park
, “
Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel
,”
Lab Chip
7
,
890
897
(
2007
).
7.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D.
Di Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
8.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
9.
B. H.
Wunsch
,
J. T.
Smith
,
S. M.
Gifford
,
C.
Wang
,
M.
Brink
,
R. L.
Bruce
,
R. H.
Austin
,
G.
Stolovitzky
, and
Y.
Astier
, “
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
,”
Nat. Nanotechnol.
11
,
936
940
(
2016
).
10.
I.
Gitlin
,
A. D.
Stroock
,
G. M.
Whitesides
, and
A.
Ajdari
, “
Pumping based on transverse electrokinetic effects
,”
Appl. Phys. Lett.
83
,
1486
1488
(
2003
).
11.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezic
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
651
(
2002
).
12.
N. L.
Kuehnbaum
and
P.
Britz-McKibbin
, “
New advances in separation science for metabolomics: Resolving chemical diversity in a post-genomic era
,”
Chem. Rev.
113
,
2437
2468
(
2013
).
13.
A.
Ajdari
, “
Transverse electrokinetic and microfluidic effects in micropatterned channels: Lubrication analysis for slab geometries
,”
Phys. Rev. E
65
,
016301
(
2001
).
14.
R. J.
Messinger
and
T. M.
Squires
, “
Suppression of electro-osmotic flow by surface roughness
,”
Phys. Rev. Lett.
105
,
144503
(
2010
).
15.
A. E.
Lim
,
C. Y.
Lim
,
Y. C.
Lam
,
R.
Taboryski
, and
S. R.
Wang
, “
Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel
,”
Nanotechnology
28
,
255303
(
2017
).
16.
J.-C.
Lei
,
C. C.
Chang
, and
C.-Y.
Wang
, “
Electro-osmotic pumping through a bumpy microtube: Boundary perturbation and detection of roughness
,”
Phys. Fluids
31
,
012001
(
2019
).
17.
L.
Chang
,
Y.
Jian
,
M.
Buren
, and
Y.
Sun
, “
Electroosmotic flow through a microparallel channel with 3D wall roughness
,”
Electrophoresis
37
,
482
492
(
2016
).
18.
D.
Saville
, “
Electrokinetic effects with small particles
,”
Annu. Rev. Fluid Mech.
9
,
321
337
(
1977
).
19.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
John Wiley & Sons
,
2005
).
20.
B.
Teshome
,
S.
Facsko
, and
A.
Keller
, “
Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces
,”
Nanoscale
6
,
1790
1796
(
2014
).
21.
E. B.
Cummings
,
S. K.
Griffiths
,
R. H.
Nilson
, and
P. H.
Paul
, “
Conditions for similitude between the fluid velocity and electric field in electroosmotic flow
,”
Anal. Chem.
72
,
2526
2532
(
2000
).
22.
Y.
Hu
,
C.
Werner
, and
D.
Li
, “
Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels
,”
J. Colloid Interface Sci.
280
,
527
536
(
2004
).
23.
M.
Wang
and
Q.
Kang
, “
Electrokinetic transport in microchannels with random roughness
,”
Anal. Chem.
81
,
2953
2961
(
2009
).
24.
F. A.
Morrison
, “
Electrophoresis of a particle of arbitrary shape
,”
J. Colloid Interface Sci.
34
,
210
214
(
1970
).
25.
S.
Dehe
,
B.
Rofman
,
M.
Bercovici
, and
S.
Hardt
, “
Electro-osmotic flow enhancement over superhydrophobic surfaces
,”
Phys. Rev. Fluids
5
,
053701
(
2020
).
26.
A. V.
Belyaev
and
O. I.
Vinogradova
, “
Electro-osmosis on anisotropic superhydrophobic surfaces
,”
Phys. Rev. Lett.
107
,
098301
(
2011
).
27.
R.
Qiao
, “
Effects of molecular level surface roughness on electroosmotic flow
,”
Microfluid. Nanofluid.
3
,
33
38
(
2006
).
28.
S.
Ghosal
, “
Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge
,”
J. Fluid Mech.
459
,
103
128
(
2002
).
29.
C.
Qi
and
C.-O.
Ng
, “
Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential
,”
Int. J. Heat Mass Transfer
119
,
52
64
(
2018
).
30.
A. E.
Lim
and
Y. C.
Lam
, “
Numerical investigation of nanostructure orientation on electroosmotic flow
,”
Micromachines
11
,
971
(
2020
).
31.
Y.
Hu
,
X.
Xuan
,
C.
Werner
, and
D.
Li
, “
Electroosmotic flow in microchannels with prismatic elements
,”
Microfluid. Nanofluid.
3
,
151
160
(
2007
).
32.
K.
Kamrin
,
M. Z.
Bazant
, and
H. A.
Stone
, “
Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor
,”
J. Fluid Mech.
658
,
409
437
(
2010
).
33.
M. K.
Dewangan
and
S.
Datta
, “
Flow through microchannels with topographically patterned wall: A spectral theory for arbitrary groove depths
,”
Eur. J. Mech. B Fluids
70
,
73
84
(
2018
).
34.
Y. C.
Shu
,
C. C.
Chang
,
Y. S.
Chen
, and
C. Y.
Wang
, “
Electro-osmotic flow in a wavy microchannel: Coherence between the electric potential and the wall shape function
,”
Phys. Fluids
22
,
082001
(
2010
).
35.
J.-C.
Lei
,
Y.-S.
Chen
,
C. C.
Chang
, and
C.-Y.
Wang
, “
Analysis of electro-osmotic flow over a slightly bumpy plate
,”
Phys. Fluids
29
,
122005
(
2017
).
36.
V.
Goyal
,
A.
Singh
, and
S.
Datta
, “Electro-osmosis over an arbitrarily-shaped periodic surface,” in Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, IIT Madras, Chennai, Tamil Nadu, India, 17–20 December 2021 (Begel House, Inc., 2021).
37.
F.
Feuillebois
,
M. Z.
Bazant
, and
O. I.
Vinogradova
, “
Transverse flow in thin superhydrophobic channels
,”
Phys. Rev. E
82
,
055301
(
2010
).
38.
E. S.
Asmolov
and
O. I.
Vinogradova
, “
Effective slip boundary conditions for arbitrary one-dimensional surfaces
,”
J. Fluid Mech.
706
,
108
117
(
2012
).
39.
M. K.
Dewangan
and
S.
Datta
, “
Effective permeability tensor of confined flows with wall grooves of arbitrary shape
,”
J. Fluid Mech.
891
,
A12
(
2020
).
40.
E. S.
Asmolov
,
A. L.
Dubov
,
T. V.
Nizkaya
,
A. J. C.
Kuehne
, and
O. I.
Vinogradova
, “
Principles of transverse flow fractionation of microparticles in superhydrophobic channels
,”
Lab Chip
15
,
2835
2841
(
2015
).
41.
S.
Pennathur
and
J. G.
Santiago
, “
Electrokinetic transport in nanochannels. 1. Theory
,”
Anal. Chem.
77
,
6772
6781
(
2005
).
42.
E.
Mainsah
,
J. A.
Greenwood
, and
D. G.
Chetwynd
,
Metrology and Properties of Engineering Surfaces
(
Springer Science & Business Media
,
2001
).
43.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
, “
Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations
,”
Electrophoresis
25
,
187
202
(
2004
).
44.
S.
Datta
and
J.
Choudhary
, “
Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels
,”
Fluid Dyn. Res.
45
,
055502
(
2013
).
45.
J.-C.
Lei
,
Y.-S.
Chen
,
C. C.
Chang
, and
C.-Y.
Wang
, “
Analysis of electro-osmotic flow over a slightly bumpy plate
,”
Phys. Fluids
29
,
122005
(
2017
).
46.
S.
Datta
and
S.
Ghosal
, “
Characterizing dispersion in microfluidic channels
,”
Lab Chip
9
,
2537
2550
(
2009
).
47.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
), Vol. 7.
48.
A. L.
Garcia
,
L. K.
Ista
,
D. N.
Petsev
,
M. J.
O’Brien
,
P.
Bisong
,
A. A.
Mammoli
,
S. R. J.
Brueck
, and
G. P.
López
, “
Electrokinetic molecular separation in nanoscale fluidic channels
,”
Lab Chip
5
,
1271
1276
(
2005
).
49.
H.-T.
Yau
,
C.-C.
Wang
,
C.-C.
Cho
, and
C.-K.
Chen
, “
A numerical investigation into electroosmotic flow in microchannels with complex wavy surfaces
,”
Therm. Sci.
15
,
87
94
(
2011
).

Supplementary Material

You do not currently have access to this content.