We report experimental results on spin-wave propagation, transmission gap tuning, and mode conversion in straight, curved, and Y-shaped yttrium iron garnet waveguides with magnonic crystals made of submicrometer-wide airgrooves. We observe forbidden frequency gaps with sizes up to 200 MHz in straight waveguides and narrowing of the gaps in curved and Y-shaped waveguides. The spin-wave transmission signal is strongly suppressed inside the gaps and remains high at allowed frequencies for all waveguide types. Using super-Nyquist sampling magneto-optical Kerr effect microscopy, we image symmetric and asymmetric spin-wave interference patterns, the self-focusing of propagating spin waves, and interconversions between width modes with different quantization numbers.

1.
V.
Kruglyak
,
S.
Demokritov
, and
D.
Grundler
, “
Magnonics
,”
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
2.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Magnon spintronics
,”
Nat. Phys.
11
,
453
461
(
2015
).
3.
A.
Chumak
,
A.
Serga
, and
B.
Hillebrands
, “
Magnonic crystals for data processing
,”
J. Phys. D: Appl. Phys.
50
,
244001
(
2017
).
4.
A.
Mahmoud
,
F.
Ciubotaru
,
F.
Vanderveken
,
A. V.
Chumak
,
S.
Hamdioui
,
C.
Adelmann
, and
S.
Cotofana
, “
Introduction to spin wave computing
,”
J. Appl. Phys.
128
,
161101
(
2020
).
5.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
,
A. O.
Adeyeye
,
M.
Krawczyk
,
J.
Gräfe
,
C.
Adelmann
,
S.
Cotofana
,
A.
Naeemi
,
V. I.
Vasyuchka
, and
B.
Hillebrands
, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
6.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Advances in coherent magnonics
,”
Nat. Rev. Mater.
6
,
1114
1135
(
2021
).
7.
A.
Chumak
,
P.
Kabos
,
M.
Wu
,
C.
Abert
,
C.
Adelmann
,
A.
Adeyeye
,
J.
Åkerman
,
F.
Aliev
,
A.
Anane
,
A.
Awad
, and
C. H.
Back
, “
Advances in magnetics roadmap on spin-wave computing
,”
IEEE Trans. Magn.
58
,
0800172
(
2022
).
8.
A.
Chumak
,
A.
Serga
,
B.
Hillebrands
, and
M.
Kostylev
, “
Scattering of backward spin waves in a one-dimensional magnonic crystal
,”
Appl. Phys. Lett.
93
,
022508
(
2008
).
9.
A.
Chumak
,
A.
Serga
,
S.
Wolff
,
B.
Hillebrands
, and
M.
Kostylev
, “
Scattering of surface and volume spin waves in a magnonic crystal
,”
Appl. Phys. Lett.
94
,
172511
(
2009
).
10.
C. L.
Ordóñez-Romero
,
Z.
Lazcano-Ortiz
,
A.
Drozdovskii
,
B.
Kalinikos
,
M.
Aguilar-Huerta
,
J.
Domínguez-Juárez
,
G.
Lopez-Maldonado
,
N.
Qureshi
,
O.
Kolokoltsev
, and
G.
Monsivais
, “
Mapping of spin wave propagation in a one-dimensional magnonic crystal
,”
J. Appl. Phys.
120
,
043901
(
2016
).
11.
A. A.
Nikitin
,
A. B.
Ustinov
,
A. A.
Semenov
,
A. V.
Chumak
,
A. A.
Serga
,
V. I.
Vasyuchka
,
E.
Lähderanta
,
B. A.
Kalinikos
, and
B.
Hillebrands
, “
A spin-wave logic gate based on a width-modulated dynamic magnonic crystal
,”
Appl. Phys. Lett.
106
,
102405
(
2015
).
12.
P.
Frey
,
A. A.
Nikitin
,
D. A.
Bozhko
,
S. A.
Bunyaev
,
G. N.
Kakazei
,
A. B.
Ustinov
,
B. A.
Kalinikos
,
F.
Ciubotaru
,
A. V.
Chumak
,
Q.
Wang
, and
V. S.
Tiberkevich
, “
Reflection-less width-modulated magnonic crystal
,”
Commun. Phys.
3
,
17
(
2020
).
13.
H.
Merbouche
,
M.
Collet
,
M.
Evelt
,
V. E.
Demidov
,
J. L.
Prieto
,
M.
Munoz
,
J.
Ben Youssef
,
G.
de Loubens
,
O.
Klein
,
S.
Xavier
, and
O.
D’Allivy Kelly
, “
Frequency filtering with a magnonic crystal based on nanometer-thick yttrium iron garnet films
,”
ACS Appl. Nano Mater.
4
,
121
128
(
2021
).
14.
M.
Inoue
,
A.
Baryshev
,
H.
Takagi
,
P. B.
Lim
,
K.
Hatafuku
,
J.
Noda
, and
K.
Togo
, “
Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature
,”
Appl. Phys. Lett.
98
,
132511
(
2011
).
15.
V.
Bessonov
,
M.
Mruczkiewicz
,
R.
Gieniusz
,
U.
Guzowska
,
A.
Maziewski
,
A.
Stognij
, and
M.
Krawczyk
, “
Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes
,”
Phys. Rev. B
91
,
104421
(
2015
).
16.
T.
Goto
,
K.
Shimada
,
Y.
Nakamura
,
H.
Uchida
, and
M.
Inoue
, “
One-dimensional magnonic crystal with Cu stripes for forward volume spin waves
,”
Phys. Rev. Appl.
11
,
014033
(
2019
).
17.
A.
Chumak
,
T.
Neumann
,
A.
Serga
,
B.
Hillebrands
, and
M.
Kostylev
, “
A current-controlled, dynamic magnonic crystal
,”
J. Phys. D: Appl. Phys.
42
,
205005
(
2009
).
18.
A. V.
Chumak
,
V. S.
Tiberkevich
,
A. D.
Karenowska
,
A. A.
Serga
,
J. F.
Gregg
,
A. N.
Slavin
, and
B.
Hillebrands
, “
All-linear time reversal by a dynamic artificial crystal
,”
Nat. Commun.
1
,
141
(
2010
).
19.
A.
Sadovnikov
,
A.
Grachev
,
S.
Sheshukova
,
Y. P.
Sharaevskii
,
A.
Serdobintsev
,
D.
Mitin
, and
S.
Nikitov
, “
Magnon straintronics: Reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes
,”
Phys. Rev. Lett.
120
,
257203
(
2018
).
20.
A. B.
Ustinov
and
B. A.
Kalinikos
, “
Multiferroic periodic structures based on magnonic crystals for electronically tunable microwave devices
,”
Tech. Phys. Lett.
40
,
568
570
(
2014
).
21.
M. A.
Morozova
,
S. V.
Grishin
,
A. V.
Sadovnikov
,
D. V.
Romanenko
,
Y. P.
Sharaevskii
, and
S. A.
Nikitov
, “
Tunable bandgaps in layered structure magnonic crystal-ferroelectric
,”
IEEE Trans. Magn.
51
,
2802504
(
2015
).
22.
A. B.
Ustinov
,
A. V.
Drozdovskii
,
A. A.
Nikitin
,
A. A.
Semenov
,
D. A.
Bozhko
,
A. A.
Serga
,
B.
Hillebrands
,
E.
Lähderanta
, and
B. A.
Kalinikos
, “
Dynamic electromagnonic crystal based on artificial multiferroic heterostructure
,”
Commun. Phys.
2
,
137
(
2019
).
23.
B.
Rana
and
Y.
Otani
, “
Towards magnonic devices based on voltage-controlled magnetic anisotropy
,”
Commun. Phys.
2
,
90
(
2019
).
24.
H.
Qin
,
R.
Dreyer
,
G.
Woltersdorf
,
T.
Taniyama
, and
S.
van Dijken
, “
Electric-field control of propagating spin waves by ferroelectric domain-wall motion in a multiferroic heterostructure
,”
Adv. Mater.
33
,
2100646
(
2021
).
25.
H.
Qin
,
G.-J.
Both
,
S. J.
Hämäläinen
,
L.
Yao
, and
S.
van Dijken
, “
Low-loss YIG-based magnonic crystals with large tunable bandgaps
,”
Nat. Commun.
9
,
5445
(
2018
).
26.
H.
Qin
and
S.
van Dijken
, “
Nanometer-thick YIG-based magnonic crystals: Bandgap dependence on groove depth, lattice constant, and film thickness
,”
Appl. Phys. Lett.
116
,
202403
(
2020
).
27.
V. E.
Demidov
,
S. O.
Demokritov
,
K.
Rott
,
P.
Krzysteczko
, and
G.
Reiss
, “
Self-focusing of spin waves in permalloy microstripes
,”
Appl. Phys. Lett.
91
,
252504
(
2007
).
28.
M.
Collet
,
O.
Gladii
,
M.
Evelt
,
V.
Bessonov
,
L.
Soumah
,
P.
Bortolotti
,
S. O.
Demokritov
,
Y.
Henry
,
V.
Cros
,
M.
Bailleul
,
V. E.
Demidov
, and
A.
Anane
, “
Spin-wave propagation in ultra-thin YIG based waveguides
,”
Appl. Phys. Lett.
110
,
092408
(
2017
).
29.
Q.
Wang
,
B.
Heinz
,
R.
Verba
,
M.
Kewenig
,
P.
Pirro
,
M.
Schneider
,
T.
Meyer
,
B.
Lägel
,
C.
Dubs
,
T.
Brächer
, and
A. V.
Chumak
, “
Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides
,”
Phys. Rev. Lett.
122
,
247202
(
2019
).
30.
B.
Heinz
,
T.
Brächer
,
M.
Schneider
,
Q.
Wang
,
B.
Lägel
,
A. M.
Friedel
,
D.
Breitbach
,
S.
Steinert
,
T.
Meyer
,
M.
Kewenig
,
C.
Dubs
,
P.
Pirro
, and
A. V.
Chumak
, “
Propagation of spin-wave packets in individual nanosized yttrium iron garnet magnonic conduits
,”
Nano Lett.
20
,
4220
4227
(
2020
).
31.
Q.
Wang
,
M.
Kewenig
,
M.
Schneider
,
R.
Verba
,
F.
Kohl
,
B.
Heinz
,
M.
Geilen
,
M.
Mohseni
,
B.
Lägel
,
F.
Ciubotaru
,
C.
Adelmann
,
C.
Dubs
,
S. D.
Cotofana
,
O. V.
Dobrovolskiy
,
T.
Brächer
,
P.
Pirro
, and
A. V.
Chumak
, “
A magnonic directional coupler for integrated magnonic half-adders
,”
Nat. Electron.
3
,
765
774
(
2020
).
32.
B.
Heinz
,
Q.
Wang
,
M.
Schneider
,
E.
Weiß
,
A.
Lentfert
,
B.
Lägel
,
T.
Brächer
,
C.
Dubs
,
O. V.
Dobrovolskiy
,
P.
Pirro
, and
A. V.
Chumak
, “
Long-range spin-wave propagation in transversely magnetized nano-scaled conduits
,”
Appl. Phys. Lett.
118
,
132406
(
2021
).
33.
Y. V.
Khivintsev
,
V. K.
Sakharov
,
A. V.
Kozhevnikov
,
G. M.
Dudko
,
Y. A.
Filimonov
, and
A.
Khitun
, “
Spin waves in YIG based magnonic networks: Design and technological aspects
,”
J. Magn. Magn. Mater.
545
,
168754
(
2022
).
34.
H.
Qin
,
R. B.
Holländer
,
L.
Flajšman
,
F.
Hermann
,
R.
Dreyer
,
G.
Woltersdorf
, and
S.
van Dijken
, “
Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation
,”
Nat. Commun.
12
,
2293
(
2021
).
35.
R.
Damon
and
J.
Eshbach
, “
Magnetostatic modes of a ferromagnet slab
,”
J. Phys. Chem. Solids
19
,
308
320
(
1961
).
36.
B.
Kalinikos
and
A.
Slavin
, “
Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
,”
J. Phys. C
19
,
7013
(
1986
).
37.
Z.
Zhang
,
M.
Vogel
,
J.
Holanda
,
J.
Ding
,
M. B.
Jungfleisch
,
Y.
Li
,
J. E.
Pearson
,
R.
Divan
,
W.
Zhang
,
A.
Hoffmann
,
Y.
Nie
, and
V.
Novosad
, “
Controlled interconversion of quantized spin wave modes via local magnetic fields
,”
Phys. Rev. B
100
,
014429
(
2019
).
38.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
39.
H.
Qin
,
S. J.
Hämäläinen
,
K.
Arjas
,
J.
Witteveen
, and
S.
van Dijken
, “
Propagating spin waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector, magnetic field strength, and angle
,”
Phys. Rev. B
98
,
224422
(
2018
).
40.
P.
Clausen
,
K.
Vogt
,
H.
Schultheiss
,
S.
Schäfer
,
B.
Obry
,
G.
Wolf
,
P.
Pirro
,
B.
Leven
, and
B.
Hillebrands
, “
Mode conversion by symmetry breaking of propagating spin waves
,”
Appl. Phys. Lett.
99
,
162505
(
2011
).
41.
K.
Vogt
,
H.
Schultheiss
,
S.
Jain
,
J.
Pearson
,
A.
Hoffmann
,
S.
Bader
, and
B.
Hillebrands
, “
Spin waves turning a corner
,”
Appl. Phys. Lett.
101
,
042410
(
2012
).
42.
A.
Sadovnikov
,
C.
Davies
,
V.
Kruglyak
,
D.
Romanenko
,
S.
Grishin
,
E.
Beginin
,
Y. P.
Sharaevskii
, and
S.
Nikitov
, “
Spin wave propagation in a uniformly biased curved magnonic waveguide
,”
Phys. Rev. B
96
,
060401
(
2017
).
You do not currently have access to this content.