Highly mismatched semiconductor alloys (HMAs) offer unusual combinations of bandgap and lattice constant, which are attractive for myriad applications. Dilute borides, such as BGa(In)As, are typically assumed to be HMAs. BGa(In)As can be grown in higher alloy compositions than Ga(In)NAs with comparable bandgaps, potentially enabling routes to lattice-matched telecom lasers on Si or GaAs. However, BGa(In)As remains relatively unexplored, especially with large fractions of indium. Density functional theory with HSE06 hybrid functionals was employed to study BGaInAs with 4%–44% In and 0%–11% B, including atomic rearrangement effects. All compositions showed a direct bandgap, and the character of the lowest conduction band was nearly unperturbed with the addition of B. Surprisingly, although the bandgap remained almost constant and the lattice constant followed Vegard's law with the addition of boron, the electron effective mass increased. The increase in electron effective mass was higher than in conventional alloys, though smaller than those characteristics of HMAs. This illustrates a particularly striking finding, specifically that the compositional space of BGa(In)As appears to span conventional alloy and HMA behavior, so it is not well-described by either limit. For example, adding B to GaAs introduces additional states within the conduction band, but further addition of In removes them, regardless of the atomic arrangement.

1.
D. B.
Jackrel
,
S. R.
Bank
,
H. B.
Yuen
,
M. A.
Wistey
, Jr.
,
J. S.
Harris
,
A. J.
Ptak
, and
S. R.
Kurtz
, “
Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy
,”
J. Appl. Phys.
101
(
11
),
114916
(
2007
).
2.
C. A.
Stephenson
,
W. A.
O'Brien
,
M. W.
Penninger
,
W. F.
Schneider
,
M.
Gillett-Kunnath
,
J.
Zajicek
, and
M. A.
Wistey
, “
Band structure of germanium carbides for direct bandgap silicon photonics
,”
J. Appl. Phys.
120
(
5
),
053102
(
2016
). doi:
3.
M.
Kondow
,
K.
Uomi
,
K.
Hosomi
, and
T.
Mozume
, “
Gas-source molecular beam epitaxy of GaNxAs1−x using a N radical as the N source
,”
Jpn. J. Appl. Phys.
33
(
8A
),
L1056
(
1994
).
4.
M.
Weyers
,
M.
Sato
, and
H.
Ando
, “
Red shift of photoluminescence and absorption in dilute GaAsN alloy layers
,”
Jpn. J. Appl. Phys.
31
(
7A
),
L853
(
1992
).
5.
K.
Uesugi
,
N.
Morooka
, and
I.
Suemune
, “
Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements
,”
Appl. Phys. Lett.
74
(
9
),
1254
1256
(
1999
).
6.
T.
Makimoto
,
H.
Saito
,
T.
Nishida
, and
N.
Kobayashi
, “
Excitonic luminescence and absorption in dilute GaAs1−x N x alloy (x< 0.3%)
,”
Appl. Phys. Lett.
70
(
22
),
2984
2986
(
1997
).
7.
M.
Sato
, “
Growth of GaAsN by low-pressure metalorganic chemical vapor deposition using plasma-cracked N2
,”
J. Cryst. Growth
145
(
1–4
),
99
103
(
1994
).
8.
G. L.
Hart
and
A.
Zunger
, “
Electronic structure of BAs and boride III-V alloys
,”
Phys. Rev. B
62
(
20
),
13522
(
2000
).
9.
K.
Osamura
,
S.
Naka
, and
Y.
Murakami
, “
Preparation and optical properties of Ga1−xInxN thin films
,”
J. Appl. Phys.
46
(
8
),
3432
3437
(
1975
).
10.
R.
Goldman
,
R.
Feenstra
,
B.
Briner
,
M.
O'steen
, and
R.
Hauenstein
, “
Atomic-scale structure and electronic properties of GaN/GaAs superlattices
,”
Appl. Phys. Lett.
69
(
24
),
3698
3700
(
1996
).
11.
R.
Kuroiwa
,
H.
Asahi
,
K.
Asami
,
S.-J.
Kim
,
K.
Iwata
, and
S.
Gonda
, “
Optical properties of GaN-rich side of GaNP and GaNAs alloys grown by gas-source molecular beam epitaxy
,”
Appl. Phys. Lett.
73
(
18
),
2630
2632
(
1998
).
12.
M.
Takahashi
,
A.
Moto
,
S.
Tanaka
,
T.
Tanabe
,
S.
Takagishi
,
K.
Karatani
,
M.
Nakayama
,
K.
Matsuda
, and
T.
Saiki
, “
Observation of compositional fluctuations in GaNAs alloys grown by metalorganic vapor-phase epitaxy
,”
J. Crystal Growth
221
(
1–4
),
461
466
(
2000
).
13.
K. M.
McNicholas
,
R. H.
El-Jaroudi
,
H.
Maczko
,
G.
Cossio
,
L. J.
Nordin
,
S. D.
Sifferman
,
R.
Kudrawiec
,
E. T.
Yu
,
D.
Wasserman
, and
S. R.
Bank
, “
BGaAs/GaP heteroepitaxy for strain-free luminescent layers on Si
,” in
60th Electronic Material Conference
,
Santa Barbara, CA, USA
(Materials Research Society,
2018
).
14.
R. H.
El-Jaroudi
,
K. M.
McNicholas
,
A. F.
Briggs
,
S. D.
Sifferman
,
L.
Nordin
, and
S. R.
Bank
, “
Room-temperature photoluminescence and electroluminescence of 1.3-μm-range BGaInAs quantum wells on GaAs substrates
,”
Appl. Phys. Lett.
117
,
021102
(
2020
).
15.
K. M.
McNicholas
,
R. H.
El-Jaroudi
, and
S. R.
Bank
, “
Kinetically limited molecular beam epitaxy of BxGa1−xAs alloys
,”
J. Cryst. Growth Des.
21
(
12
),
6076
6082
(
2021
).
16.
J.
Kopaczek
,
F.
Dybala
,
S. J.
Zelewski
,
N.
Sokolowski
,
W.
Zuraw
,
K. M.
McNicholas
,
R. H.
El-Jaroudi
,
R. C.
White
,
S. R.
Bank
, and
R.
Kudrawiec
, “
Photoreflectance studies of temperature and hydrostatic pressure dependencies of direct optical transitions in BGaAs alloys grown on GaP
,”
J. Phys. D: Appl. Phys.
55
(
1
),
015107
(
2021
).
17.
R. H.
El-Jaroudi
,
K. M.
McNicholas
,
H. S.
Maczko
,
R.
Kudrawiec
, and
S. R.
Bank
, “
Growth advancement of GaAs-based BGaInAs alloys emitting at 1.3 μm by molecular beam epitaxy
,”
J. Crys. Growth Des.
22
(
6
),
3753
3759
(
2022
).
18.
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
,
S. R.
Kurtz
,
R. C.
Reedy
,
A. B.
Swartzlander
,
B. M.
Keyes
, and
A. G.
Norman
, “
BGaInAs alloys lattice-matched to GaAs
,”
Appl. Phys. Lett.
76
(
11
),
1443
1445
(
2000
).
19.
V.
Gupta
,
M.
Koch
,
N.
Watkins
,
Y.
Gao
, and
G.
Wicks
, “
Molecular beam epitaxial growth of BGaAs ternary compounds
,”
J. Electron. Mater.
29
(
12
),
1387
1391
(
2000
).
20.
W.
Shan
,
W.
Walukiewicz
,
J.
Wu
,
K. M.
Yu
,
J. W.
Ager
 III
,
S. X.
Li
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
, and
S. R.
Kurtz
, “
Band-gap bowing effects in BxGa1−xAs alloys
,”
J. Appl. Phys.
93
(
5
),
2696
2699
(
2003
).
21.
V.
Gottschalch
,
G.
Leibiger
, and
G.
Benndorf
, “
MOVPE growth of BxGa1−xAs, BxGa1−x−yInyAs, and BxAl1−xAs alloys on (0 0 1) GaAs
,”
J. Cryst. Growth
248
,
468
473
(
2003
).
22.
R.
Hamila
,
F.
Saidi
,
A.
Fouzri
,
L.
Auvray
,
Y.
Monteil
, and
H.
Maaref
, “
Clustering effects in optical properties of BGaAs/GaAs epilayers
,”
J. Lumin.
129
(
9
),
1010
1014
(
2009
).
23.
S.
Ilahi
,
F.
Saidi
,
R.
Hamila
,
N.
Yacoubi
,
H.
Maaref
, and
L.
Auvray
, “
Shift of the gap energy and thermal conductivity in BGaAs/GaAs alloys
,”
Phys. B
421
,
105
109
(
2013
).
24.
S.
Ku
, “
Preparation and properties of boron arsenides and boron arsenide-gallium arsenide mixed crystals
,”
J. Electrochem. Soc.
113
(
8
),
813
(
1966
).
25.
R.
Hamila
,
F.
Saidi
,
P. H.
Rodriguez
,
L.
Auvray
,
Y.
Monteil
, and
H.
Maaref
, “
Growth temperature effects on boron incorporation and optical properties of BGaAs/GaAs grown by MOCVD
,”
J. Alloys Compd.
506
(
1
),
10
13
(
2010
).
26.
Q.
Wang
,
Z.
Jia
,
X.
Ren
,
Y.
Yan
,
Z.
Bian
,
X.
Zhang
,
S.
Cai
, and
Y.
Huang
, “
Effect of boron incorporation on the structural and photoluminescence properties of highly-strained InxGa1−xAs/GaAs multiple quantum wells
,”
AIP Adv.
3
,
072111
(
2013
).
27.
J. F.
Geisz
,
D. J.
Friedman
, and
S.
Kurtz
, in
Proceedings of the 20th IEEE Photovoltaic Specialists Conference
(
IEEE
,
2000
).
28.
R. H.
El-Jaroudi
,
K. M.
McNicholas
,
B. A.
Bouslog
,
I. E.
Olivares
,
R. C.
White
,
J. A.
McArthur
, and
S. R.
Bank
, “
Boron alloys for GaAs-based 1.3
μm semiconductor lasers
,” in
2019 Conference on Lasers and Electro-Optics (CLEO)
(IEEE,
2019
), pp.
1
2
.
29.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
 III
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
, “
Band anticrossing in GaInNAs alloys
,”
Phys. Rev. Lett.
82
(
6
),
1221
(
1999
).
30.
A.
Lindsay
and
E.
O'Reilly
, “
Theory of conduction band dispersion in dilute BxGa1−xAs alloys
,”
Phys. Rev. B
76
(
7
),
075210
(
2007
).
31.
A.
Lindsay
and
E. P.
O'Reilly
, “
Theory of electronic structure of BGaAs and related alloys
,”
Phys. Status Solidi
5
,
454
459
(
2008
).
32.
L.
Bellaiche
and
A.
Zunger
, “
Effects of atomic short-range order on the electronic and optical properties of GaAsN, GaInN, and GaInAs alloys
,”
Phys. Rev. B
57
(
8
),
4425
(
1998
).
33.
P.
Kent
and
A.
Zunger
, “
Evolution of III-V nitride alloy electronic structure: The localized to delocalized transition
,”
Phys. Rev. Lett.
86
(
12
),
2613
(
2001
).
34.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
(
1996
).
35.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
(
1994
).
36.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
(
18
),
8207
8215
(
2003
).
37.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
, “
Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
,”
J. Chem. Phys.
123
(
17
),
174101
(
2005
).
38.
C.
Freysoldt
, and
J.
Neugebauer
, “
Point defects in supercells: Correction schemes for the dilute limit
,” in
ICMR Workshop on Ab-Initio Description of Charged Systems and Solid/Liquid Interfaces
(ICMR,
2014
).
39.
I.
Gulyas
,
R.
Kudrawiec
, and
M. A.
Wistey
, “
Electronic structure of BxGa1−xAs alloys using hybrid functionals
,”
J. Appl. Phys.
126
(
9
),
095703
(
2019
).
40.
T. B.
Boykin
,
N.
Kharche
,
G.
Klimeck
, and
M.
Korkusinski
, “
Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations
,”
J. Phys.: Condens. Matter
19
(
3
),
036203
(
2007
).
41.
V.
Popescu
and
A.
Zunger
, “
Extracting E vs k → Effective band structure from supercell calculations on alloys and impurities
,”
Phys. Rev. B
85
(
8
),
085201
(
2012
).
42.
P. V.
Medeiros
,
S.
Stafström
, and
J.
Björk
, “
Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding
,”
Phys. Rev. B
89
(
4
),
041407
(
2014
).
43.
P. V.
Medeiros
,
S. S.
Tsirkin
,
S.
Stafström
, and
J.
Björk
, “
Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator
,”
Phys. Rev. B
91
(
4
),
041116
(
2015
).
44.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
, “
Band parameters for III–V compound semiconductors and their alloys
,”
J. Appl. Phys.
89
(
11
),
5815
5875
(
2001
).
45.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
, “
Screened hybrid density functionals applied to solids
,”
J. Chem. Phys.
124
(
15
),
154709
(
2006
).
46.
T.
Shimazaki
and
Y.
Asai
, “
Energy band structure calculations based on screened Hartree–Fock exchange method: Si, AlP, AlAs, GaP, and GaAs
,”
J. Chem. Phys.
132
(
22
),
224105
(
2010
).
47.
F.
Tran
and
P.
Blaha
, “
Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
,”
Phys. Rev. Lett.
102
(
22
),
226401
(
2009
).
48.
H.-P.
Komsa
and
A.
Pasquarello
, “
Dangling bond charge transition levels in AlAs, GaAs, and InAs
,”
Appl. Phys. Lett.
97
(
19
),
191901
(
2010
).
49.
B.
Song
,
K.
Chen
,
K.
Bushick
,
K. A.
Mengle
,
F.
Tian
,
G. A. G. U.
Gamage
,
Z.
Ren
,
E.
Kioupakis
, and
G.
Chen
, “
Optical properties of cubic boron arsenide
,”
Appl. Phys. Lett.
116
(
14
),
141903
(
2020
).
50.
J.
Buckeridge
and
D. O.
Scanlon
, “
Electronic band structure and optical properties of boron arsenide
,”
Phys. Rev. Mater.
3
(
5
),
051601
(
2019
).
51.
I.
Bravić
and
B.
Monserrat
, “
Finite temperature optoelectronic properties of BAs from first principles
,”
Phys. Rev. Mater.
3
(
6
),
065402
(
2019
).
52.
N.
Chimot
,
J.
Even
,
H.
Folliot
, and
S.
Loualiche
, “
Structural and electronic properties of BAs and BxGa1−xAs, BxIn1−xAs alloys
,”
Phys. B
364
(
1–4
),
263
272
(
2005
).
53.
S.
Murphy
,
A.
Chroneos
,
C.
Jiang
,
U.
Schwingenschlögl
, and
R.
Grimes
, “
Deviations from Vegard’s law in ternary III-V alloys
,”
Phys. Rev. B
82
(
7
),
073201
(
2010
).
54.
T.
Hofmann
,
M.
Schubert
,
G.
Leibiger
, and
V.
Gottschalch
, “
Electron effective mass and phonon modes in GaAs incorporating boron and indium
,”
Appl. Phys. Lett.
90
(
18
),
182110
(
2007
).
55.
W.
Nakwaski
, “
Effective masses of electrons and heavy holes in GaAs, InAs, AlAs and their ternary compounds
,”
Phys. B
210
(
1
),
1
25
(
1995
).
56.
P.
Hai
,
W.
Chen
,
I.
Buyanova
,
H.
Xin
, and
C.
Tu
, “
Direct determination of electron effective mass in GaNAs/GaAs quantum wells
,”
Appl. Phys. Lett.
77
(
12
),
1843
1845
(
2000
).
57.
Z.
Pan
,
L.
Li
,
Y.
Lin
,
B.
Sun
,
D.
Jiang
, and
W.
Ge
, “
Conduction band offset and electron effective mass in GaInNAs/GaAs quantum-well structures with low nitrogen concentration
,”
Appl. Phys. Lett.
78
(
15
),
2217
2219
(
2001
).
You do not currently have access to this content.