The effect of thermal oxide layer on He implanted 316L stainless steel was studied to evaluate experimentally how thermal oxidation affects the diffusion and distribution of He in the material. In the case of thermal oxidation of a He implanted sample, with an increase in oxidation time, the max swelling height increases logarithmically as a function of time and finally saturates for all samples except for the lowest dose of implanted He. Concerning TEM results, two void regions are identified. Similar to the calculation, the total irradiated depth was around 250 nm and the large void region was formed around 100–150 nm depth. On the other hand, the small void region was observed immediately under oxide layer from the thermal oxidation. In contrast, there were no voids in the altered zone near the metal/oxide interface in the non-thermal oxidized/He implanted sample. This description of the phenomena was justified using the Kirkendall effect and the Point Defect Model.

1.
L.
Zhang
and
J.
Wang
,
J. Nucl. Mater.
446
,
15
26
(
2014
).
2.
D. W.
Kim
,
W.-S.
Ryu
,
J. H.
Hong
, and
S.-K.
Choi
,
J. Nucl. Mater.
254
,
226
233
(
1998
).
3.
M.-S.
Hong
,
S.-H.
Kim
,
S.-Y.
Im
, and
J.-G.
Kim
,
Met. Mater. Int.
22
,
621
629
(
2016
).
4.
J. R.
Keiser
,
J. H.
DeVan
, and
D. L.
Manning
, “
Corrosion resistance of type 316 stainless steel to Li2BeF4
,” No. ORNL/TM-5782, Oak Ridge National Laboratory,
1977
.
5.
J.
Qiu
,
D. D.
Macdonald
,
R.
Schoell
,
J.
Han
,
S.
Mastromarino
,
J. R.
Scully
,
D.
Kaoumi
, and
P.
Hosemann
,
Corros. Sci.
186
,
109457
(
2021
).
6.
A.
Boiler
,
P. V.
Committee
,
A. S. M. E.
Boiler
, and
P. V.
Code
,
Section III Rules for Construction of Nuclear Power Plant Components
, 1995 ed. (
ASME
,
1995
), Division 1-Appendices, pp.
377
382
.
7.
F.
Zhang
,
L.
Boatner
,
Y.
Zhang
,
D.
Chen
,
Y.
Wang
, and
L.
Wang
,
Materials
12
,
2821
(
2019
).
8.
A. P.
Kinzig
,
J. P.
Holdren
, and
P. J.
Hibbard
,
Fusion Technol.
26
,
79
104
(
1994
).
9.
P.
Hosemann
,
D.
Frazer
,
M.
Fratoni
,
A.
Bolind
, and
M.
Ashby
,
Scr. Mater.
143
,
181
187
(
2018
).
10.
M.
Moschetti
,
P. A.
Burr
,
E.
Obbard
,
J. J.
Kruzic
,
P.
Hosemann
, and
B.
Gludovatz
,
J. Nucl. Mater.
567
,
153814
(
2022
).
11.
L. K.
Mansur
,
A.
Rowcliffe
,
R.
Nanstad
,
S.
Zinkle
,
W.
Corwin
, and
R.
Stoller
,
J. Nucl. Mater.
329
,
166
172
(
2004
).
12.
S. R.
Soria
,
A.
Tolley
, and
E. A.
Sánchez
,
J. Nucl. Mater.
467
,
357
367
(
2015
).
13.
P.
Hosemann
,
M.
Sebastiani
,
M.
Mughal
,
X.
Huang
,
A.
Scott
, and
M.
Balooch
,
J. Mater. Res.
36
,
2349
2356
(
2021
).
14.
P.
Thorsen
,
J.
Bilde-Sørensen
, and
B.
Singh
,
Scr. Mater.
51
,
557
560
(
2004
).
15.
E.
Torres
,
C.
Judge
,
H.
Rajakumar
,
A.
Korinek
,
J.
Pencer
, and
G.
Bickel
,
J. Nucl. Mater.
495
,
475
483
(
2017
).
16.
S.
Saremi
,
R.
Xu
,
F. I.
Allen
,
J.
Maher
,
J. C.
Agar
,
R.
Gao
,
P.
Hosemann
, and
L. W.
Martin
,
Phys. Rev. Mater.
2
,
084414
(
2018
).
17.
R. E.
Stoller
and
D. M.
Stewart
,
J. Nucl. Mater.
417
,
1106
1109
(
2011
).
18.
V.
Veligura
,
G.
Hlawacek
,
R. P.
Berkelaar
,
R.
van Gastel
,
H. J.
Zandvliet
, and
B.
Poelsema
,
Beilstein J. Nanotechnol.
4
,
453
460
(
2013
).
19.
M.
Ambat
,
D.
Frazer
,
M.
Popovic
,
M.
Balooch
,
S.
Stevenson
,
A.
Scott
,
J.
Kabel
, and
P.
Hosemann
,
JOM
72
,
170
175
(
2020
).
20.
F. I.
Allen
,
P.
Hosemann
, and
M.
Balooch
,
Scr. Mater.
178
,
256
260
(
2020
).
21.
M.
Wurmshuber
,
M.
Balooch
,
X.
Huang
,
P.
Hosemann
, and
D.
Kiener
,
Scr. Mater.
213
,
114641
(
2022
).
22.
M.
Balooch
,
F.
Allen
,
M.
Popovic
, and
P.
Hosemann
,
J. Nucl. Mater.
559
,
153436
(
2022
).
23.
Y.
Yang
,
D.
Frazer
,
M.
Balooch
, and
P.
Hosemann
,
J. Nucl. Mater.
512
,
137
143
(
2018
).
24.
G.
Hlawacek
,
V.
Veligura
,
R.
van Gastel
, and
B.
Poelsema
,
J. Vac. Sci. Technol. B
32
,
020801
(
2014
).
25.
B.
Cipiti
and
G.
Kulcinski
,
J. Nucl. Mater.
347
,
298
306
(
2005
).
26.
Z.-J.
Wang
,
F. I.
Allen
,
Z.-W.
Shan
, and
P.
Hosemann
,
Acta Mater.
121
,
78
84
(
2016
).
27.
W.
Liu
,
Y.
Ji
,
P.
Tan
,
C.
Zhang
,
C.
He
, and
Z.
Yang
,
J. Nucl. Mater.
479
,
323
330
(
2016
).
28.
D. D.
Macdonald
,
Electrochim. Acta
56
,
1761
1772
(
2011
).
29.
H. J.
Fan
,
M.
Knez
,
R.
Scholz
,
D.
Hesse
,
K.
Nielsch
,
M.
Zacharias
 et al.,
Nano lett.
7
,
993
997
(
2007
).
30.
31.
J. P.
Biersack
and
M. D.
Ziegler
,
SRIM, the Stopping and Range of Ions in Matter
(
SRIM Company
,
2008
).
32.
R.
Schoell
,
D.
Frazer
,
C.
Zheng
,
P.
Hosemann
, and
D.
Kaoumi
,
JOM
72
,
2778
2785
(
2020
).
33.
Y.
Mori
,
M.
Hashimoto
, and
J.
Liao
,
ISIJ Int.
53
,
1057
1061
(
2013
).
34.
H.
Evans
,
D.
Hilton
, and
R.
Holm
,
Oxid. Met.
10
,
149
161
(
1976
).
35.
A. K.
Misra
and
J. D.
Whittenberger
, “
Fluoride salts and container materials for thermal energy storage applications in the temperature range 973–1400 K
,” in
22nd Intersociety Energy Conversion Engineering Conference
(
American Institute of Aeronautics and Astronautics
,
1987
), p.
9226
.
36.
X.
Huang
,
K.
Xiao
,
X.
Fang
,
Z.
Xiong
,
L.
Wei
,
P.
Zhu
, and
X.
Li
,
Mater. Res. Express
7
,
066517
(
2020
).
37.
L. C.
Olson
,
J. W.
Ambrosek
,
K.
Sridharan
,
M. H.
Anderson
, and
T. R.
Allen
,
J. Fluorine Chem.
130
,
67
73
(
2009
).
38.
H.
Evans
,
Mater. Sci. Technol.
4
,
1089
1098
(
1988
).
39.
C.
Desgranges
,
F.
Lequien
,
E.
Aublant
,
M.
Nastar
, and
D.
Monceau
,
Oxid. Met.
79
,
93
105
(
2013
).
40.
A. H.
Rosenstein
,
J. K.
Tien
, and
W. D.
Nix
,
Metall. Mater. Trans. A
17
,
151
162
(
1986
).
41.
Y.
Li
,
D. D.
Macdonald
,
J.
Yang
,
J.
Qiu
, and
S.
Wang
,
Corros. Sci.
163
,
108280
(
2020
).
42.
L.
Zhang
and
D. D.
Macdonald
,
Electrochim. Acta
43
,
2661
2671
(
1998
).
43.
L.
Zhang
and
D. D.
Macdonald
,
Electrochim. Acta
43
,
2673
2685
(
1998
).
44.
P.
Erhart
,
J. Appl. Phys.
111
,
113502
(
2012
).
45.
L.
Klinger
and
E.
Rabkin
,
Mater. Lett.
161
,
508
510
(
2015
).
46.
M. P.
Agustianingrum
,
F. H.
Latief
,
N.
Park
, and
U.
Lee
,
Intermetallics
120
,
106757
(
2020
).
47.
Y.-K.
Kim
,
Y.-A.
Joo
,
H. S.
Kim
, and
K.-A.
Lee
,
Intermetallics
98
,
45
53
(
2018
).
48.
E.
Hayward
and
C.-C.
Fu
,
Phys. Rev. B
87
,
174103
(
2013
).
49.
Y.
Fukai
,
J. Alloys Compd.
356
,
263
269
(
2003
).
50.
V.
Borodin
and
P.
Vladimirov
,
J. Nucl. Mater.
362
,
161
166
(
2007
).
51.
D.
Reed
,
Radiat. Eff.
31
,
129
147
(
1977
).
52.
K. R.
Zavadil
,
J.
Ohlhausen
, and
P.
Kotula
,
J. Electrochem. Soc.
153
,
B296
(
2006
).
53.
A.
Zieliński
and
S.
Sobieszczyk
,
Int. J. Hydrogen Energy
36
,
8619
8629
(
2011
).
54.
D. J.
Ellerbrock
and
D. D.
Macdonald
,
J. Electrochem. Soc.
141
,
2645
(
1994
).
55.
D. D.
Macdonald
,
Pure Appl. Chem.
71
,
951
978
(
1999
).

Supplementary Material

You do not currently have access to this content.