High throughput nanoindentation techniques can provide rapid materials screening and property mapping and can span millimeter length scales and up to 106 data points. To facilitate rapid sorting of these data into similar groups, a necessary task for establishing structure–property relationships, use of an unsupervised machine learning analysis called clustering has grown in popularity. Here, a method is proposed and tested that evaluates the uncertainty associated with various clustering algorithms for an example high entropy alloy data set and explores the effect of the number of data points in a second Damascus steel data set. The proposed method utilizes the bootstrapping method of Efron to resample a modeled probability distribution function based upon the original data, which allows the uncertainty related to the clustering to be evaluated in contrast to the classical standard error on the mean calculations. For the Damascus, it was found that results data from a 104 point subsample are comparable to those from the full 106 set while representing a significant reduction in data acquisition.

1.
A. C.
Fischer-Cripps
,
Nanoindentation
, 1st ed. (
Springer
,
2002
).
2.
International Organization for Standardization
, Metallic materials—Tensile testing—Part 1: Method of test at room temperature, ISO 6892-1:2019 (2019).
3.
E. D.
Hintsala
,
U.
Hangen
, and
D. D.
Stauffer
,
JOM
70
,
494
503
(
2018
).
4.
Y.
Chen
,
E.
Hintsala
,
N.
Li
,
B. R.
Becker
,
J. Y.
Cheng
,
B.
Nowakowski
,
J.
Weaver
,
D.
Stauffer
, and
N. A.
Mara
,
JOM
71
,
3368
3377
(
2019
).
5.
U.
Hangen
,
E.
Hintsala
, and
D.
Stauffer
, “
Nanomechanical mapping for individual phase performance as a function of environment
,” in
presented at MSE Darmstadt
(Deutsche Gesellschaft füerialkunde,
2018
).
6.
F.
Cellini
,
F.
Lavini
,
C.
Berger
,
W.
de Heer
, and
E.
Riedo
,
2D Mater.
6
(
3
),
035043
(
2019
).
7.
K. L.
Johnson
,
J. Mech. Phys. Solids
18
,
115
126
(
1970
).
8.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
1987
).
9.
J.
Beddoes
and
M.
Bibby
,
Principles of Metal Manufacturing Processes
(
Butterworth-Heinemann
,
1999
).
10.
H. D.
Alvarenga
,
T.
Van De Putte
,
N.
Van Steenberge
,
J.
Sietsma
, and
H.
Terryn
,
Metall. Mater. Trans. A
46
,
123
133
(
2015
).
11.
D. C.
Hofmann
,
S.
Roberts
,
R.
Otis
,
J.
Kolodziejska
,
R. P.
Dillon
,
J. O.
Suh
,
A. A.
Shapiro
,
Z. K.
Liu
, and
J. P.
Borgonia
,
Sci. Rep.
4
,
1
(
2014
).
12.
Y.
Lu
,
S.
Su
,
S.
Zhang
,
Y.
Huang
,
Z.
Qin
,
X.
Lu
, and
W.
Chen
,
Acta Mater.
206
,
116632
(
2021
).
13.
M.
Zhang
,
X.
Liu
,
Y.
Wang
, and
X.
Wang
,
Int. J. Damage Mech.
28
,
772
793
(
2019
).
14.
S.
Kang
,
V.
Shangguan
,
L.
Yu
, and
W. T.
Chien
,
Int. J. Mater., Mech. Manuf.
4
,
273
(
2016
).
15.
J. P.
Park
,
S.
Mohanty
,
C. B.
Bahn
,
S.
Majumdar
, and
K.
Natesan
,
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
3
,
011004
(
2020
).
16.
A. J.
Parker
and
A. S.
Barnard
,
Adv. Theory Simul.
2
,
1900145
(
2019
).
17.
F.-Y.
Huang
,
Y.-W.
Liu
, and
J.-C.
Kuo
,
Appl. Nanosci.
11
,
895
909
(
2021
).
18.
A.
Charvatova Campbell
,
V.
Buršíková
,
R.
Šlesinger
, and
P.
Klapetek
, in
Proceedings of the 9th International Conference on Nanomaterials–Research & Application
(Tanger Ltd.,
2018
), p.
942
.
19.
M. R.
VanLandingham
,
J. S.
Villarrubia
,
W. F.
Guthrie
, and
G.
Meyers
, in
Macromolecular Symposia 167
(Wiley-VCH,
2001
), p. 71.
20.
M.
Laurent-Brocq
,
E.
Béjanin
, and
Y.
Champion
,
Scanning
37
,
350
360
(
2015
).
21.
J.
Menčík
,
Nanoindentation Mater. Sci.
54
,
53
(
2012
).
22.
International Organization for Standardization
, Metallic Materials: Instrumented Indentation Test for Hardness and Materials Parameters, ISO 14577-1:2015 (2015).
23.
J. E.
Jakes
and
D.
Stauffer
,
J. Mater. Res.
1
, 2189–2197 (
2021
).
24.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
,
npj Comput. Mater.
5
,
1
(
2019
).
25.
F. T.
Liu
,
K. M.
Ting
, and
Z. H.
Zhou
, in
Proceeding ICDM ‘08 Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
(IEEE, Piscataway, NJ,
2008
), p.
413
.
26.
K. P.
Murphy
,
Machine Learning: A Probabilistic Perspective
, 1st ed. (
The MIT Press
,
2012
).
27.
A. P.
Demster
,
N. M.
Laird
, and
D. B.
Rubin
,
J. R. Stat. Soc.: Ser., B
39
,
1
(
1977
).
28.
M.
Rosenblatt
,
Ann. Math. Statist.
27
,
832
837
(
1956
).
29.
E.
Parzen
,
Ann. Math. Statist.
33
,
1065
1076
(
1962
).
30.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
1092
(
1953
).
31.
W. K.
Hastings
,
Biometrika
57
,
97
109
(
1970
).
32.
C. P.
Robert
and
G.
Casella
,
Introducing Monte Carlo Methods with R
, 1st ed. (
Springer
,
2010
).
33.
J.
MacQueen
, in
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1: Statistics
(University of California Press,
1967
), p.
281
.
34.
C.
Elkans
, in
Proceedings of the ICML
(AAAIP,
2003
), p.
03-022
.
35.
J.
Shi
and
J.
Malik
,
IEEE Trans. Pattern Anal. Machine Learning
22-8
,
888
(
2000
).
36.
F.
Chung
,
Spectral Graph Theory
, 2nd ed. (
AMS
,
1997
).
37.
U.
von Luxburg
,
Statistics Comput.
17
,
395
416
(
2007
).
38.
D.
Yan
,
L.
Huang
, and
M.I.
Jordan
, in
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(ACM,
2009
), p.
907
.
39.
R. L.
Thorndike
, “
Who belongs in the family?
,”
Psychometrika
18
,
267
276
(
1953
).
41.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Statist.
6
,
461
(
1978
).
42.
H.
Akaike
, “
Information theory and an extension of the maximum likelihood principle
,” in
Second International Symposium on Information Theory
(Akademiai Kiado,
1973
), p.
267
.
43.
H.
Akaike
, “
A new look at the statistical model identification
,”
IEEE Trans. Automatic Control
19
,
716
723
(
1974
).
44.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
É
Duchesnay
,
JMLR
12
,
2825
(
2011
).
45.
D.
Arthur
and
S.
Vassilvitskii
, in
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(SIAM,
2007
), p.
1027
.
46.
P. S.
Phani
and
W. C.
Oliver
,
Mater. Des.
164
,
107563
(
2019
).
47.
B.
Efron
,
Ann. Statist.
7
,
1
(
1979
).
48.
B.
Efron
and
T.
Hastie
,
Computer Age: Statistical Inference Algorithms, Evidence, and Data Science
, 1st ed. (
Cambridge University Press
,
2016
).
49.
B.
Efron
,
E.
Halloran
, and
S.
Holmes
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13429
(
1996
).
50.
G.
Simpson
and
H.
Mayer-Hasselwander
,
Astron. Astrophys.
162
,
340
348
(
1986
).
51.
G. E.
Hinton
and
R. R.
Salakhtdinov
,
Science
313
,
504
507
(
2006
).
52.
I. J.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
,
Adv. Neur. In.
63
(
11
),
2672
(
2014
).
53.
R.
Di Sipio
,
M. F.
Giannelli
,
S. K.
Haghighat
, and
S.
Palazzo
,
J. High Energy Phys.
2019
,
110
(
2019
).
54.
L.
Lu
,
M.
Dao
,
P.
Kumar
,
U.
Ramamurty
,
G. E.
Karniadakis
, and
S.
Suresh
,
Proc. Natl. Acad. Sci. U.S.A.
117
,
7052
7062
(
2020
).

Supplementary Material

You do not currently have access to this content.