Here, a model lab-scale solution blowing setup was developed. Experiments were carried out in a model situation of two needles at several inter-needle distances and air velocities to investigate jet roping. Polymer jets issued from two needles were employed at the inter-needle distances of L = 4.5, 4, 3.5, 3, and 2.5 mm. Polymer jet intersections and merging near the needle tip and at a distance of ∼150 mm from the needle tip and near the collector were recorded employing a high-speed camera. The laydown images captured for each inter-needle distance were analyzed using scanning electron microscopy to link the laydown morphology to roping, which stems from the polymer jet–jet intersection in flight.

1.
Y.
Zhang
,
T. L.
Chwee
,
S.
Ramakrishna
, and
Z. M.
Huang
, “
Recent development of polymer nanofibers for biomedical and biotechnological applications
,”
J. Mater. Sci.: Mater. Med.
16
,
933
946
(
2005
).
2.
C.
Burger
,
B. S.
Hsiao
, and
B.
Chu
, “
Nanofibrous materials and their applications
,”
Annu. Rev. Mater. Res.
36
,
333
368
(
2006
).
3.
D. H.
Reneker
and
I.
Chun
, “
Nanometre diameter fibres of polymer produced by electrospinning
,”
Nanotechnology
7
,
216
223
(
1996
).
4.
Z. M.
Huang
,
Y.-Z.
Zhang
,
M.
Kotaki
, and
S.
Ramakrishna
, “
A review on polymer nanofibers by electrospinning and their applications in nanocomposites
,”
Compos. Sci. Technol.
63
,
2223
2253
(
2003
).
5.
A. L.
Yarin
,
B.
Pourdeyhimi
, and
S.
Ramakrishna
,
Fundamentals and Applications of Micro-and Nanofibers
(
Cambridge University Press
,
Cambridge
,
2014
).
6.
R. L.
Shambaugh
, “
A macroscopic view of the melt-blowing process for producing microfibers
,”
Ind. Eng. Chem. Res.
27
,
2363
2372
(
1988
).
7.
A. L.
Yarin
,
S.
Sinha-Ray
, and
B.
Pourdeyhimi
, “
Meltblowing: Multiple polymer jets and fiber-size distribution and lay-down patterns
,”
Polymer
52
,
2929
2938
(
2011
).
8.
E. S.
Medeiros
,
G. M.
Glenn
,
A. P.
Klamczynski
,
W. J.
Orts
, and
L. H. C.
Mattoso
, “
Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions
,”
J. Appl. Polym. Sci.
113
,
2322
2330
(
2009
).
9.
S.
Sinha-Ray
,
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Theoretical and experimental investigation of physical mechanisms responsible for polymer nanofiber formation in solution blowing
,”
Polymer
56
,
452
463
(
2015
).
10.
P. X.
Ma
and
R.
Zhang
, “
Synthetic nano-scale fibrous extracellular matrix
,”
J. Biomed. Mater. Res.
46
,
60
72
(
1999
).
11.
J. D.
Hartgerink
,
E.
Beniash
, and
S. I.
Stupp
, “
Self-assembly and mineralization of peptide-amphiphile nanofibers
,”
Science
294
,
1684
1688
(
2001
).
12.
C. R.
Martin
, “
Membrane-based synthesis of nanomaterials
,”
Chem. Mater.
8
,
1739
1746
(
1996
).
13.
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
The production of 100/400 nm inner/outer diameter carbon tubes by solution blowing and carbonization of core-shell nanofibers
,”
Carbon
48
,
3575
3578
(
2010
).
14.
S.
Sinha-Ray
,
Y.
Zhang
,
A. L.
Yarin
,
S. C.
Davis
, and
B.
Pourdeyhimi
, “
Solution blowing of soy protein fibers
,”
Biomacromolecules
12
,
2357
2363
(
2011
).
15.
S.
Khansari
,
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Stress strain dependence for soy-protein nanofiber mats
,”
J. Appl. Phys.
111
,
044906
(
2012
).
16.
S.
Sinha-Ray
,
S.
Khansari
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Effect of chemical and physical cross-linking on tensile characteristics of solution-blown soy protein nanofiber mats
,”
Ind. Eng. Chem. Res.
51
,
15109
15121
(
2012
).
17.
Y.
Lee
and
L. C.
Wadsworth
, “
Effects of meltblowing process conditions on morphological and mechanical properties of polypropylene webs
,”
Polymer
33
,
1200
1209
(
1992
).
18.
S. R.
Malkan
and
L. C.
Wadsworth
, “
Process-structure-property relationships in different molecular weight polypropylene melt-blown webs
,”
Doctoral dissertation
(
The University of Tennessee
,
1990
).
19.
A.
Ghosal
,
S.
Sinha-Ray
,
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Numerical modeling and experimental study of solution-blown nonwovens formed on a rotating drum
,”
Polymer
105
,
255
263
(
2016
).
20.
K.
Chen
,
A.
Ghosal
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Modeling of spunbond formation process of polymer nonwovens
,”
Polymer
187
,
121902
(
2020
).
21.
A.
Ghosal
,
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Numerical prediction of the effect of uptake velocity on three-dimensional structure, porosity and permeability of meltblown nonwoven laydown
,”
Polymer
85
,
19
27
(
2016
).
22.
K.
Chen
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Prediction of crystallinity of spunbond webs
,”
J. Appl. Phys.
128
,
205101
(
2020
).
23.
J.
Drabek
and
M.
Zatloukala
, “
Meltblown technology for production of polymeric microfibers/nanofibers: A review
,”
Phys. Fluids
31
,
091301
(
2019
).
24.
R. S.
Rao
and
R. L.
Shambaugh
, “
Vibration and stability in the melt blowing process
,”
Ind. Eng. Chem. Res.
32
,
3100
3111
(
1993
).
25.
R.
Chhabra
and
R. L.
Shambaugh
, “
Experimental measurements of fiber threadline vibrations in the melt-blowing process
,”
Ind. Eng. Chem. Res.
35
,
4366
4374
(
1996
).
26.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman, John Wiley & Sons
,
Harlow
,
NY
,
1993
).
27.
S.
Xie
and
Y.
Zeng
, “
Online measurement of fiber whipping in the meltblowing process
,”
Ind. Eng. Chem. Res.
52
,
2116
2122
(
2013
).
28.
C.
Chung
and
S.
Kumar
, “
Onset of whipping in the melt blowing process
,”
J. Non-Newtonian Fluid Mech.
192
,
37
47
(
2013
).
29.
H.-Y.
Liu
,
Y.-J.
Yao
, and
M.-Y.
Qian
, “
Interaction of multiple jets in bubble electrospinning
,”
Therm. Sci.
00
,
83
(
2022
).
30.
J.
Musil
and
M.
Zatloukal
, “
Historical review of die drool phenomenon in plastic extrusion
,”
Polym. Rev.
54
,
139
184
(
2014
).
31.
C. J.
Ellison
,
A.
Phatak
,
D. W.
Giles
,
C. W.
Macosko
, and
F. S.
Bates
, “
Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup
,”
Polymer
48
,
3306
3316
(
2007
).
32.
R.
Ruamsuk
,
W.
Takarada
, and
T.
Kikutani
, “
Fine filament formation behavior of polymethylpentene and polypropylene near spinneret in melt blowing process
,”
Int. Polym. Process.
31
,
217
223
(
2016
).
33.
R.
Bresee
,
A.
Qureshi
, and
M.
Pelham
, “
Influence of processing conditions on melt blown web structure: Part 2 -primary airflow rate
,”
Int. Nonwovens J.
os-14
,
1558925005os-14
(
2005
).
34.
M. A.
Hassan
,
B. Y.
Yeom
,
A.
Wilkie
,
B.
Pourdeyhimi
, and
S. A.
Khan
, “
Fabrication of nanofiber meltblown membranes and their filtration properties
,”
J. Membr. Sci.
427
,
336
344
(
2013
).
35.
E. M.
Moore
,
D. V.
Papavassiliou
, and
R. L.
Shambaugh
, “
Air velocity, air temperature, fiber vibration and fiber diameter measurements on a practical melt blowing die
,”
Int. Nonwovens J.
os-13,
43
53
(
2004
).
36.
D. H.
Tan
,
P. K.
Herman
,
F. S.
Bates
,
S.
Kumar
, and
C. W.
Macosko
, “
Influence of Laval nozzles on the air flow field in melt blowing apparatus
,”
Chem. Eng. Sci.
80
,
342
348
(
2012
).
37.
R. R.
Bresee
and
Z.
Yan
, “
Shot development in meltblown webs
,”
J. Text. Inst.
89
,
304
319
(
1998
).
38.
E.
Roberts
,
S.
Ghosh
, and
B.
Pourdeyhimi
, “
Process–structure–property relationship of roping in meltblown nonwovens
,”
J. Text. Inst.
1
,
1
14
(
2022
).
39.
Y. E.
Geguzin
,
Migration of Macroscopic Inclusions in Solids
(
Springer
,
Heidelberg
,
1973
).
40.
M.
Lauricella
,
S.
Succi
,
E.
Zussman
,
D.
Pisignano
, and
A. L.
Yarin
, “
Models of polymer solutions in electrified jets and solution blowing
,”
Rev. Mod. Phys.
92
,
035004-1
035004-47
(
2020
).

Supplementary Material

You do not currently have access to this content.