The shock compression of magnesium (Mg-4Al-2Zn) alloy polycrystalline films on glass under ultrashort loads driven by sub-picosecond laser pulses was investigated. The continuous diagnostics of motion and reflectivity changes of the free rear surface of the samples was carried out in the picosecond range (≤200 ps) in a single pulse mode using ultrafast spectral interferometry. We present the data on elastoplastic shock wave evolution at a propagation distance of several hundreds of nanometers, elastic precursor decay, shear, and tensile strengths at the extreme strain rate of ∼109 s−1.

1.
K. T.
Gahagan
,
D. S.
Moore
,
D. J.
Funk
,
R. L.
Rabie
,
S. J.
Buelow
, and
J. W.
Nicholson
, “
Measurement of shock wave rise times in metal thin films
,”
Phys. Rev. Lett.
85
,
3205
(
2000
).
2.
S. I.
Ashitkov
,
M. B.
Agranat
,
G. I.
Kanel’
,
P. S.
Komarov
, and
V. E.
Fortov
, “
Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
,”
JETP Lett.
92
,
516
(
2010
).
3.
V. H.
Whitley
,
S. D.
McGrane
,
D. E.
Eakins
,
C. A.
Bolme
,
D. S.
Moore
, and
J. F.
Bingert
, “
The elastic-plastic response of aluminum films to ultrafast laser-generated shocks
,”
J. Appl. Phys.
109
,
013505
(
2011
).
4.
J. C.
Crowhurst
,
M. R.
Armstrong
,
K. B.
Knight
,
J. M.
Zaug
, and
E. M.
Behymer
, “
Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
,”
Phys. Rev. Lett.
107
,
144302
(
2011
).
5.
S. I.
Ashitkov
,
M.
Agranat
,
G. I.
Kanel
 et al., “
Approaching the ultimate shear and tensile strength of aluminum in experiments with femtosecond pulse laser
,”
AIP Conf. Proc.
1426
,
1081
(
2012
).
6.
B. J.
Demaske
,
V. V.
Zhakhovsky
,
N. A.
Inogamov
, and
I. I.
Oleynik
, “
Ultrashort shock waves in nickel induced by femtosecond laser pulses
,”
Phys. Rev. B
87
,
054109
(
2013
).
7.
S. I.
Ashitkov
,
P. S.
Komarov
,
M. B.
Agranat
,
G. I.
Kanel
, and
V. E.
Fortov
, “
Achievement of ultimate values of the bulk and shear strengths of iron irradiated by femtosecond laser pulses
,”
JETP Lett.
98
,
384
(
2013
).
8.
J. C.
Crowhurst
,
B. W.
Reed
,
M. R.
Armstrong
,
H. B.
Radousky
,
J. A.
Carter
,
D. C.
Swift
,
J. M.
Zaug
,
R. W.
Minich
,
N. E.
Teslich
, and
M.
Kumar
, “
The α→ɛ phase transition in iron at strain rates up to ∼109 s−1
,”
J. Appl. Phys.
115
,
113506
(
2014
).
9.
S. I.
Ashitkov
,
P. S.
Komarov
,
E. V.
Struleva
,
M. B.
Agranat
, and
G. I.
Kanel
, “
Mechanical and optical properties of vanadium under shock picosecond loads
,”
JETP Lett.
101
,
276
(
2015
).
10.
B.
Zuanetti
,
S. D.
McGrane
,
C. A.
Bolme
, and
V.
Prakash
, “
Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks
,”
J. Appl. Phys.
123
,
195104
(
2018
).
11.
R. F.
Smith
,
J. H.
Eggert
,
R. E.
Rudd
,
D. C.
Swift
,
C. A.
Bolme
, and
G. W.
Collins
, “
High strain-rate plastic flow in Al and Fe
,”
J. Appl. Phys.
110
,
123515
(
2011
).
12.
S. I.
Ashitkov
,
V. V.
Zhakhovsky
,
N. A.
Inogamov
 et al., “
The behavior of iron under ultrafast shock loading driven by a femtosecond laser
,”
AIP Conf. Proc.
1793
,
100035
(
2017
).
13.
S.
Eliezer
,
E.
Moshe
, and
D.
Eliezer
, “
Laser-induced tension to measure the ultimate strength of metals related to the equation of state
,”
Laser Part. Beams
20
,
87
92
(
2002
).
14.
G. I.
Kanel’
,
V. E.
Fortov
, and
S. V.
Razorenov
, “
Shock waves in condensed-state physics
,”
Phys. Usp.
50
,
771
(
2007
).
15.
G. I.
Kanel
,
E. B.
Zaretsky
,
S. V.
Razorenov
,
S. I.
Ashitkov
, and
V. E.
Fortov
, “
Unusual plasticity and strength of metals at ultra-short load durations
,”
Phys. Usp.
60
,
490
(
2017
).
16.
T.
Antoun
,
L.
Seaman
,
D.
Curran
,
G. I.
Kanel
,
S. V.
Razorenov
, and
A. V.
Utkin
,
Spall Fracture
(
Springer
,
New York
,
2002
), p.
99
.
17.
S.
Ogata
,
J.
Li
,
N.
Hirosaki
,
Y.
Shibutani
, and
S.
Yip
, “
Ideal shear strain of metals and ceramics
,”
Phys. Rev. B
70
,
104104
(
2004
).
18.
G. I.
Kanel
,
S. V.
Razorenov
,
G. V.
Garkushin
,
S. I.
Ashitkov
,
P. S.
Komarov
, and
M. B.
Agranat
, “
Deformation resistance and fracture of iron over a wide strain rate range
,”
Phys. Solid State
56
,
1569
1573
(
2014
).
19.
B.
Gurrutxaga-Lerma
,
M. A.
Shehadeh
,
D. S.
Balint
,
D.
Dini
,
L.
Chen
, and
D. E.
Eakins
, “
The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron
,”
Int. J. Plast.
96
,
135
155
(
2017
).
20.
S.
Galitskiy
,
D. S.
Ivanov
, and
A. M.
Dongare
, “
Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales
,”
J. Appl. Phys.
124
(
20
),
205901
(
2018
).
21.
M. B.
Agranat
,
S. I.
Anisimov
,
S. I.
Ashitkov
,
V. V.
Zhakhovskii
,
N. A.
Inogamov
,
P. S.
Komarov
,
A. V.
Ovchinnikov
,
V. E.
Fortov
,
V. A.
Khokhlov
, and
V. V.
Shepelev
, “
Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses
,”
JETP Lett.
91
,
471
(
2010
).
22.
V. V.
Zhakhovsky
,
M. M.
Budzevich
,
N. A.
Inogamov
,
I. I.
Oleynik
, and
C. T.
White
, “
Two-zone elastic-plastic single shock waves in solids
,”
Phys. Rev. Lett.
107
,
135502
(
2011
).
23.
N. A.
Inogamov
,
V. V.
Zhakhovskii
,
V. A.
Khokhlov
, and
V. V.
Shepelev
, “
Superelasticity and the propagation of shock waves in crystals
,”
JETP Lett.
93
,
226
232
(
2011
).
24.
N. A.
Inogamov
,
V. V.
Zhakhovsky
,
Y. V.
Petrov
,
V. A.
Khokhlov
,
S. I.
Ashitkov
,
K. V.
Khishchenko
,
K. P.
Migdal
,
D. K.
Ilnitsky
,
Y. N.
Emirov
,
P. S.
Komarov
,
V. V.
Shepelev
,
C. W.
Miller
,
I. I.
Oleynik
,
M. B.
Agranat
,
A. V.
Andriyash
,
S. I.
Anisimov
, and
V. E.
Fortov
, “
Electron-ion relaxation, phase transitions, and surface nano-structuring produced by ultrashort laser pulses in metals
,”
Contrib. Plasma Phys.
53
(
10
),
796
810
(
2013
).
25.
N. A.
Inogamov
,
V. V.
Zhakhovskii
,
S. I.
Ashitkov
,
Y. V.
Petrov
,
M. B.
Agranat
,
S. I.
Anisimov
,
K.
Nishihara
, and
V. E.
Fortov
, “
Nanospallation induced by an ultrashort laser pulse
,”
J. Exp. Theor. Phys.
107
,
1
(
2008
).
26.
N. A.
Inogamov
,
S. I.
Ashitkov
,
V. V.
Zhakhovsky
,
V. V.
Shepelev
,
V. A.
Khokhlov
,
P. S.
Komarov
,
M. B.
Agranat
,
S. I.
Anisimov
, and
V. E.
Fortov
, “
Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse
,”
Appl. Phys. A
101
(
1
),
1
5
(
2010
).
27.
N. A.
Inogamov
,
V. V.
Zhakhovsky
,
S. I.
Ashitkov
,
V. A.
Khokhlov
,
V. V.
Shepelev
,
P. S.
Komarov
,
A. V.
Ovchinnikov
,
D. S.
Sitnikov
,
Y. V.
Petrov
,
M. B.
Agranat
,
S. I.
Anisimov
, and
V. E.
Fortov
, “
Laser acoustic probing of two-temperature zone created by femtosecond pulse
,”
Contrib. Plasma Phys.
51
(
4
),
367
374
(
2011
).
28.
G. I.
Kanel
,
A. S.
Savinykh
,
G. V.
Garkushin
,
S. V.
Razorenov
,
S. I.
Ashitkov
, and
E. B.
Zaretsky
, “
Peculiarities of evolutions of elastic-plastic shock compression waves in different materials
,”
J. Phys. Conf. Ser.
774
,
012048
(
2016
).
29.
T. E.
Arvidsson
,
Y. M.
Gupta
, and
G. E.
Duvall
, “
Precursor decay in 1060 aluminum
,”
J. Appl. Phys.
46
(
10
),
4474
(
1975
).
30.
E. B.
Zaretsky
and
G. I.
Kanel
, “
Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures
,”
J. Appl. Phys.
117
(
19
),
195901
(
2015
).
31.
E. B.
Zaretsky
and
G. I.
Kanel
, “
Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures, non-monotonous decay of the elastic wave in vanadium
,”
J. Appl. Phys.
115
(
24
),
243502
(
2014
).
32.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
, and
B. L.
Holian
, “
Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals
,”
Phys. Rev. B
72
,
064120
(
2005
).
33.
B. T.
Wang
,
J. L.
Shao
,
G. C.
Zhang
,
W. D.
Li
, and
P.
Zhang
, “
Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression
,”
J. Phys.: Condens. Matter
21
,
495702
(
2009
).
34.
S.
Murzov
,
S.
Ashitkov
,
E.
Struleva
,
P.
Komarov
,
V.
Zhakhovsky
,
V.
Khokhlov
, and
N.
Inogamov
, “
Elastoplastic and polymorphic transformations of iron at ultra-high strain rates in laser-driven shock waves
,”
J. Appl. Phys.
130
(
24
),
245902
(
2021
).
35.
L. M.
Barker
and
R. E.
Hollenbach
, “
Shock wave study of the
αε
phase transition in iron
,”
J. Appl. Phys.
45
,
4872
(
1974
).
36.
J. P.
Escobedo
,
E. N.
Brown
,
C. P.
Trujillo
,
E. K.
Cerreta
, and
G. T.
Gray
, “
The effect of shock-wave profile on dynamic brittle failure
,”
J. Appl. Phys.
113
(
10
),
103506
(
2013
).
37.
T. J.
Flanagan
,
S.
Vijayan
,
S.
Galitskiy
,
J.
Davis
,
B. A.
Bedard
,
C. L.
Williams
,
A. M.
Dongare
,
M.
Aindow
, and
S.-W.
Lee
, “
Shock-induced deformation twinning and softening in magnesium single crystals
,”
Mater. Des.
194
,
108884
(
2020
).
38.
B. L.
Mordike
and
T.
Ebert
, “
Magnesium: Properties—Applications—Potential
,”
Mater. Sci. Eng., A
302
,
37
45
(
2001
).
39.
G. V.
Garkushin
,
G. I.
Kanel’
, and
S. V.
Razorenov
, “
High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading
,”
Phys. Solid State
54
,
1079
(
2012
).
40.
G. V.
Garkushin
,
G. I.
Kanel
, and
S. V.
Razorenov
, “
The resistance to deformation and facture of magnesium Ma2-1 under shock-wave loading at 293
K and 823 K of the temperature
,”
AIP Conf. Proc.
1426
,
935
(
2012
).
41.
G. I.
Kanel
,
S. V.
Razorenov
,
A.
Bogatch
,
A. V.
Utkin
,
V. E.
Fortov
, and
D. E.
Grady
, “
Spall fracture properties of aluminum and magnesium at high temperatures
,”
J. Appl. Phys.
79
(
11
),
8310
(
1996
).
42.
G. I.
Kanel
,
G. V.
Garkushin
,
A. S.
Savinykh
,
S. V.
Razorenov
,
T.
de Resseguier
,
W. G.
Proud
, and
M. R.
Tyutin
, “
Shock response of magnesium single crystals at normal and elevated temperatures
,”
J. Appl. Phys.
116
,
143504
(
2014
).
43.
P.
Renganathan
and
Y. M.
Gupta
, “
Shock compression/release of magnesium single crystals along a low-symmetry orientation: Role of basal slip
,”
J. Appl. Phys.
126
,
115902
(
2019
).
44.
J. M.
Winey
,
P.
Renganathan
, and
Y. M.
Gupta
, “
Shock wave compression and release of hexagonal-close-packed metal single crystals: Inelastic deformation of c-axis magnesium
,”
J. Appl. Phys.
117
(
10
),
105903
(
2015
).
45.
J. P.
Geindre
,
P.
Audebert
,
S.
Rebibo
, and
J. C.
Gauthier
, “
Single-shot spectral interferometry with chirped pulses
,”
Opt. Lett.
26
,
1612
(
2001
).
46.
D. S.
Moore
,
K. T.
Gahagan
,
J. H.
Reho
,
D. J.
Funk
,
S. J.
Buelow
,
R. L.
Rabie
, and
T.
Lippert
, “
Ultrafast nonlinear optical method for generation of planar shocks
,”
Appl. Phys. Lett.
78
,
40
(
2001
).
47.
S. I.
Ashitkov
,
P. S.
Komarov
,
A. V.
Ovchinnikov
,
E. V.
Struleva
, and
M. B.
Agranat
, “
Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser
,”
Quantum Electron.
43
(
3
),
242
(
2013
).
48.
V. V.
Temnov
,
K.
Sokolowski-Tinten
,
P.
Zhou
, and
D.
von der Linde
, “
Ultrafast imaging interferometry at femtosecond-laser-excited surfaces
,”
J. Opt. Soc. Am. B
23
,
1954
(
2006
).
49.
V. E.
Fortov
,
L. V.
Al'tshuler
,
R. F.
Trunina
, and
A. I.
Funtikov
,
Shock Waves and Extreme States of Matter
(
Nauka
,
Moscow
,
2000
).
50.
Y. B.
Zeldovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
(
Dover
,
New York
,
1967
).
51.
G. I.
Kanel
, “
Distortion of the wave profiles in an elastoplastic body upon spalling
,”
J. Appl. Mech. Tech. Phys.
42
(
2
),
358
362
(
2001
).
52.
A. V.
Utkin
, “
Determination of the constants of spall-fracture kinetics of materials by using experimental data
,”
J. Appl. Mech. Tech. Phys.
38
(
6
),
952
960
(
1997
).
You do not currently have access to this content.