The shock compression of magnesium (Mg-4Al-2Zn) alloy polycrystalline films on glass under ultrashort loads driven by sub-picosecond laser pulses was investigated. The continuous diagnostics of motion and reflectivity changes of the free rear surface of the samples was carried out in the picosecond range (≤200 ps) in a single pulse mode using ultrafast spectral interferometry. We present the data on elastoplastic shock wave evolution at a propagation distance of several hundreds of nanometers, elastic precursor decay, shear, and tensile strengths at the extreme strain rate of ∼109 s−1.
REFERENCES
1.
K. T.
Gahagan
, D. S.
Moore
, D. J.
Funk
, R. L.
Rabie
, S. J.
Buelow
, and J. W.
Nicholson
, “Measurement of shock wave rise times in metal thin films
,” Phys. Rev. Lett.
85
, 3205
(2000
). 2.
S. I.
Ashitkov
, M. B.
Agranat
, G. I.
Kanel’
, P. S.
Komarov
, and V. E.
Fortov
, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
,” JETP Lett.
92
, 516
(2010
). 3.
V. H.
Whitley
, S. D.
McGrane
, D. E.
Eakins
, C. A.
Bolme
, D. S.
Moore
, and J. F.
Bingert
, “The elastic-plastic response of aluminum films to ultrafast laser-generated shocks
,” J. Appl. Phys.
109
, 013505
(2011
). 4.
J. C.
Crowhurst
, M. R.
Armstrong
, K. B.
Knight
, J. M.
Zaug
, and E. M.
Behymer
, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
,” Phys. Rev. Lett.
107
, 144302
(2011
). 5.
S. I.
Ashitkov
, M.
Agranat
, G. I.
Kanel
et al., “Approaching the ultimate shear and tensile strength of aluminum in experiments with femtosecond pulse laser
,” AIP Conf. Proc.
1426
, 1081
(2012
). 6.
B. J.
Demaske
, V. V.
Zhakhovsky
, N. A.
Inogamov
, and I. I.
Oleynik
, “Ultrashort shock waves in nickel induced by femtosecond laser pulses
,” Phys. Rev. B
87
, 054109
(2013
). 7.
S. I.
Ashitkov
, P. S.
Komarov
, M. B.
Agranat
, G. I.
Kanel
, and V. E.
Fortov
, “Achievement of ultimate values of the bulk and shear strengths of iron irradiated by femtosecond laser pulses
,” JETP Lett.
98
, 384
(2013
). 8.
J. C.
Crowhurst
, B. W.
Reed
, M. R.
Armstrong
, H. B.
Radousky
, J. A.
Carter
, D. C.
Swift
, J. M.
Zaug
, R. W.
Minich
, N. E.
Teslich
, and M.
Kumar
, “The α→ɛ phase transition in iron at strain rates up to ∼109 s−1
,” J. Appl. Phys.
115
, 113506
(2014
). 9.
S. I.
Ashitkov
, P. S.
Komarov
, E. V.
Struleva
, M. B.
Agranat
, and G. I.
Kanel
, “Mechanical and optical properties of vanadium under shock picosecond loads
,” JETP Lett.
101
, 276
(2015
). 10.
B.
Zuanetti
, S. D.
McGrane
, C. A.
Bolme
, and V.
Prakash
, “Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks
,” J. Appl. Phys.
123
, 195104
(2018
). 11.
R. F.
Smith
, J. H.
Eggert
, R. E.
Rudd
, D. C.
Swift
, C. A.
Bolme
, and G. W.
Collins
, “High strain-rate plastic flow in Al and Fe
,” J. Appl. Phys.
110
, 123515
(2011
). 12.
S. I.
Ashitkov
, V. V.
Zhakhovsky
, N. A.
Inogamov
et al., “The behavior of iron under ultrafast shock loading driven by a femtosecond laser
,” AIP Conf. Proc.
1793
, 100035
(2017
). 13.
S.
Eliezer
, E.
Moshe
, and D.
Eliezer
, “Laser-induced tension to measure the ultimate strength of metals related to the equation of state
,” Laser Part. Beams
20
, 87
–92
(2002
). 14.
G. I.
Kanel’
, V. E.
Fortov
, and S. V.
Razorenov
, “Shock waves in condensed-state physics
,” Phys. Usp.
50
, 771
(2007
). 15.
G. I.
Kanel
, E. B.
Zaretsky
, S. V.
Razorenov
, S. I.
Ashitkov
, and V. E.
Fortov
, “Unusual plasticity and strength of metals at ultra-short load durations
,” Phys. Usp.
60
, 490
(2017
). 16.
T.
Antoun
, L.
Seaman
, D.
Curran
, G. I.
Kanel
, S. V.
Razorenov
, and A. V.
Utkin
, Spall Fracture
(Springer
, New York
, 2002
), p. 99
.17.
S.
Ogata
, J.
Li
, N.
Hirosaki
, Y.
Shibutani
, and S.
Yip
, “Ideal shear strain of metals and ceramics
,” Phys. Rev. B
70
, 104104
(2004
). 18.
G. I.
Kanel
, S. V.
Razorenov
, G. V.
Garkushin
, S. I.
Ashitkov
, P. S.
Komarov
, and M. B.
Agranat
, “Deformation resistance and fracture of iron over a wide strain rate range
,” Phys. Solid State
56
, 1569
–1573
(2014
). 19.
B.
Gurrutxaga-Lerma
, M. A.
Shehadeh
, D. S.
Balint
, D.
Dini
, L.
Chen
, and D. E.
Eakins
, “The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron
,” Int. J. Plast.
96
, 135
–155
(2017
). 20.
S.
Galitskiy
, D. S.
Ivanov
, and A. M.
Dongare
, “Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales
,” J. Appl. Phys.
124
(20
), 205901
(2018
). 21.
M. B.
Agranat
, S. I.
Anisimov
, S. I.
Ashitkov
, V. V.
Zhakhovskii
, N. A.
Inogamov
, P. S.
Komarov
, A. V.
Ovchinnikov
, V. E.
Fortov
, V. A.
Khokhlov
, and V. V.
Shepelev
, “Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses
,” JETP Lett.
91
, 471
(2010
). 22.
V. V.
Zhakhovsky
, M. M.
Budzevich
, N. A.
Inogamov
, I. I.
Oleynik
, and C. T.
White
, “Two-zone elastic-plastic single shock waves in solids
,” Phys. Rev. Lett.
107
, 135502
(2011
). 23.
N. A.
Inogamov
, V. V.
Zhakhovskii
, V. A.
Khokhlov
, and V. V.
Shepelev
, “Superelasticity and the propagation of shock waves in crystals
,” JETP Lett.
93
, 226
–232
(2011
). 24.
N. A.
Inogamov
, V. V.
Zhakhovsky
, Y. V.
Petrov
, V. A.
Khokhlov
, S. I.
Ashitkov
, K. V.
Khishchenko
, K. P.
Migdal
, D. K.
Ilnitsky
, Y. N.
Emirov
, P. S.
Komarov
, V. V.
Shepelev
, C. W.
Miller
, I. I.
Oleynik
, M. B.
Agranat
, A. V.
Andriyash
, S. I.
Anisimov
, and V. E.
Fortov
, “Electron-ion relaxation, phase transitions, and surface nano-structuring produced by ultrashort laser pulses in metals
,” Contrib. Plasma Phys.
53
(10
), 796
–810
(2013
). 25.
N. A.
Inogamov
, V. V.
Zhakhovskii
, S. I.
Ashitkov
, Y. V.
Petrov
, M. B.
Agranat
, S. I.
Anisimov
, K.
Nishihara
, and V. E.
Fortov
, “Nanospallation induced by an ultrashort laser pulse
,” J. Exp. Theor. Phys.
107
, 1
(2008
). 26.
N. A.
Inogamov
, S. I.
Ashitkov
, V. V.
Zhakhovsky
, V. V.
Shepelev
, V. A.
Khokhlov
, P. S.
Komarov
, M. B.
Agranat
, S. I.
Anisimov
, and V. E.
Fortov
, “Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse
,” Appl. Phys. A
101
(1
), 1
–5
(2010
). 27.
N. A.
Inogamov
, V. V.
Zhakhovsky
, S. I.
Ashitkov
, V. A.
Khokhlov
, V. V.
Shepelev
, P. S.
Komarov
, A. V.
Ovchinnikov
, D. S.
Sitnikov
, Y. V.
Petrov
, M. B.
Agranat
, S. I.
Anisimov
, and V. E.
Fortov
, “Laser acoustic probing of two-temperature zone created by femtosecond pulse
,” Contrib. Plasma Phys.
51
(4
), 367
–374
(2011
). 28.
G. I.
Kanel
, A. S.
Savinykh
, G. V.
Garkushin
, S. V.
Razorenov
, S. I.
Ashitkov
, and E. B.
Zaretsky
, “Peculiarities of evolutions of elastic-plastic shock compression waves in different materials
,” J. Phys. Conf. Ser.
774
, 012048
(2016
). 29.
T. E.
Arvidsson
, Y. M.
Gupta
, and G. E.
Duvall
, “Precursor decay in 1060 aluminum
,” J. Appl. Phys.
46
(10
), 4474
(1975
). 30.
E. B.
Zaretsky
and G. I.
Kanel
, “Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures
,” J. Appl. Phys.
117
(19
), 195901
(2015
). 31.
E. B.
Zaretsky
and G. I.
Kanel
, “Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures, non-monotonous decay of the elastic wave in vanadium
,” J. Appl. Phys.
115
(24
), 243502
(2014
). 32.
K.
Kadau
, T. C.
Germann
, P. S.
Lomdahl
, and B. L.
Holian
, “Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals
,” Phys. Rev. B
72
, 064120
(2005
). 33.
B. T.
Wang
, J. L.
Shao
, G. C.
Zhang
, W. D.
Li
, and P.
Zhang
, “Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression
,” J. Phys.: Condens. Matter
21
, 495702
(2009
). 34.
S.
Murzov
, S.
Ashitkov
, E.
Struleva
, P.
Komarov
, V.
Zhakhovsky
, V.
Khokhlov
, and N.
Inogamov
, “Elastoplastic and polymorphic transformations of iron at ultra-high strain rates in laser-driven shock waves
,” J. Appl. Phys.
130
(24
), 245902
(2021
). 35.
L. M.
Barker
and R. E.
Hollenbach
, “Shock wave study of the
phase transition in iron
,” J. Appl. Phys.
45
, 4872
(1974
). 36.
J. P.
Escobedo
, E. N.
Brown
, C. P.
Trujillo
, E. K.
Cerreta
, and G. T.
Gray
, “The effect of shock-wave profile on dynamic brittle failure
,” J. Appl. Phys.
113
(10
), 103506
(2013
). 37.
T. J.
Flanagan
, S.
Vijayan
, S.
Galitskiy
, J.
Davis
, B. A.
Bedard
, C. L.
Williams
, A. M.
Dongare
, M.
Aindow
, and S.-W.
Lee
, “Shock-induced deformation twinning and softening in magnesium single crystals
,” Mater. Des.
194
, 108884
(2020
). 38.
B. L.
Mordike
and T.
Ebert
, “Magnesium: Properties—Applications—Potential
,” Mater. Sci. Eng., A
302
, 37
–45
(2001
). 39.
G. V.
Garkushin
, G. I.
Kanel’
, and S. V.
Razorenov
, “High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading
,” Phys. Solid State
54
, 1079
(2012
). 40.
G. V.
Garkushin
, G. I.
Kanel
, and S. V.
Razorenov
, “The resistance to deformation and facture of magnesium Ma2-1 under shock-wave loading at 293
K and 823 K of the temperature
,” AIP Conf. Proc.
1426
, 935
(2012
). 41.
G. I.
Kanel
, S. V.
Razorenov
, A.
Bogatch
, A. V.
Utkin
, V. E.
Fortov
, and D. E.
Grady
, “Spall fracture properties of aluminum and magnesium at high temperatures
,” J. Appl. Phys.
79
(11
), 8310
(1996
). 42.
G. I.
Kanel
, G. V.
Garkushin
, A. S.
Savinykh
, S. V.
Razorenov
, T.
de Resseguier
, W. G.
Proud
, and M. R.
Tyutin
, “Shock response of magnesium single crystals at normal and elevated temperatures
,” J. Appl. Phys.
116
, 143504
(2014
). 43.
P.
Renganathan
and Y. M.
Gupta
, “Shock compression/release of magnesium single crystals along a low-symmetry orientation: Role of basal slip
,” J. Appl. Phys.
126
, 115902
(2019
). 44.
J. M.
Winey
, P.
Renganathan
, and Y. M.
Gupta
, “Shock wave compression and release of hexagonal-close-packed metal single crystals: Inelastic deformation of c-axis magnesium
,” J. Appl. Phys.
117
(10
), 105903
(2015
). 45.
J. P.
Geindre
, P.
Audebert
, S.
Rebibo
, and J. C.
Gauthier
, “Single-shot spectral interferometry with chirped pulses
,” Opt. Lett.
26
, 1612
(2001
). 46.
D. S.
Moore
, K. T.
Gahagan
, J. H.
Reho
, D. J.
Funk
, S. J.
Buelow
, R. L.
Rabie
, and T.
Lippert
, “Ultrafast nonlinear optical method for generation of planar shocks
,” Appl. Phys. Lett.
78
, 40
(2001
). 47.
S. I.
Ashitkov
, P. S.
Komarov
, A. V.
Ovchinnikov
, E. V.
Struleva
, and M. B.
Agranat
, “Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser
,” Quantum Electron.
43
(3
), 242
(2013
). 48.
V. V.
Temnov
, K.
Sokolowski-Tinten
, P.
Zhou
, and D.
von der Linde
, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces
,” J. Opt. Soc. Am. B
23
, 1954
(2006
). 49.
V. E.
Fortov
, L. V.
Al'tshuler
, R. F.
Trunina
, and A. I.
Funtikov
, Shock Waves and Extreme States of Matter
(Nauka
, Moscow
, 2000
).50.
Y. B.
Zeldovich
and Y. P.
Raizer
, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
(Dover
, New York
, 1967
).51.
G. I.
Kanel
, “Distortion of the wave profiles in an elastoplastic body upon spalling
,” J. Appl. Mech. Tech. Phys.
42
(2
), 358
–362
(2001
). 52.
A. V.
Utkin
, “Determination of the constants of spall-fracture kinetics of materials by using experimental data
,” J. Appl. Mech. Tech. Phys.
38
(6
), 952
–960
(1997
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.