At the atomic scale, uranium–plutonium mixed oxides (U,Pu)O2 are characterized by cationic chemical disorder, which entails that U and Pu cations are randomly distributed on the cation sublattice. In the present work, we study the impact of disorder on point defect formation energies in (U,Pu)O2 using interatomic-potential and density functional theory (DFT + U) calculations. We focus on bound Schottky defects (BSD) that are among the most stable defects in these oxides. As a first step, we estimate the distance RD around the BSD up to which the local chemical environment significantly affects their formation energy. To this end, we propose an original procedure in which the formation energy is computed for several supercells at varying levels of disorder. We conclude that the first three cation shells around the BSD have a non-negligible influence on their formation energy (RD7.0Å). We apply then a systematic approach to compute the BSD formation energies for all the possible cation configurations on the first and second nearest neighbor shells around the BSD. We show that the formation energy can range in an interval of 0.97 eV, depending on the relative amount of U and Pu neighboring cations. Based on these results, we propose an interaction model that describes the effect of nominal and local composition on the BSD formation energy. Finally, the DFT + U benchmark calculations show a satisfactory agreement for configurations characterized by a U-rich local environment and a larger mismatch in the case of a Pu-rich one. In summary, this work provides valuable insights on the properties of BSD defects in (U,Pu)O2 and can represent a valid strategy to study point defect properties in disordered compounds.

1.
S. O.
Vălu
 et al, “
The high-temperature heat capacity of the (Th,U)O2 and (U,Pu)O2 solid solutions
,”
J. Nucl. Mater.
484
,
1
6
(
2017
).
2.
T. L.
Markin
and
R. S.
Street
, “
The uranium-plutonium-oxygen ternary phase diagram
,”
J. Inorg. Nucl. Chem.
29
(
9
),
2265
2280
(
1967
).
3.
N. H.
Brett
, “
Oxidation products of plutonium dioxide-uranium dioxide solid solutions in air at 750
C
,”
J. Inorg. Nucl. Chem.
28
(
5
), 1191–1203 (
1966
).
4.
W. L.
Lyon
and
W. E.
Baily
, “
The solid-liquid phase diagram for the UO2-PuO2 system
,”
J. Nucl. Mater.
22
,
332
(
1967
).
5.
L. F.
Epstein
, “
Ideal solution behavior and heats of fusion from the UO2-PuO2 phase diagram
,”
J. Nucl. Mater.
22
(
3
),
340
349
(
1967
).
6.
R.
Böhler
 et al, “
Recent advances in the study of the UO2–PuO2 phase diagram at high temperatures
,”
J. Nucl. Mater.
448
(
1–3
),
330
339
(
2014
).
7.
C.
Guéneau
 et al, “
Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems
,”
J. Nucl. Mater.
419
(
1–3
),
145
167
(
2011
).
8.
C. O. T.
Galvin
,
P. A.
Burr
,
M. W. D.
Cooper
,
P. C. M.
Fossati
, and
R. W.
Grimes
, “
Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th,U)O2, (Th,Pu)O2 and (Pu,U)O2
,”
J. Nucl. Mater.
534
,
152127
(
2020
).
9.
P.
Martin
 et al, “
XAS study of (U1−yPuy)O2 solid solutions
,”
J. Alloys Compd.
444–445
,
410
414
(
2007
).
10.
J.
Wiktor
,
M.-F.
Barthe
,
G.
Jomard
,
M.
Torrent
,
M.
Freyss
, and
M.
Bertolus
, “
Coupled experimental and DFT + U investigation of positron lifetimes in UO2
,”
Phys. Rev. B
90
(
18
), 184101 (
2014
).
11.
R.
Bès
 et al, “
Experimental evidence of Xe incorporation in Schottky defects in UO2
,”
Appl. Phys. Lett.
106
(
11
),
114102
(
2015
).
12.
E.
Vathonne
, “Étude par calcul de structure électronique des dégâts d’irradiation dans le combustible nucléaire UO2: comportement des défauts ponctuels et gaz de fission,” p. 271.
13.
A. E.
Thompson
and
C.
Wolverton
, “
First-principles study of noble gas impurities and defects in UO2
,”
Phys. Rev. B
84
(
13
), 134111 (
2011
).
14.
H.
Matzke
, “
Atomic transport properties in UO2 and mixed oxides (U,Pu)O2
,”
J. Chem. Soc. Faraday Trans.
83
(
7
),
1121
1142
(
1987
).
15.
I.
Cheik Njifon
,
Modélisation des modifications structurales, électroniques et thermodynamiques induites par les défauts ponctuels dans les oxydes mixtes à base d’actinides (U,Pu)O2
(
Aix-Marseille Université
,
2018
).
16.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
(
3
),
943
954
(
1991
).
17.
J.
von Pezold
,
A.
Dick
,
M.
Friák
, and
J.
Neugebauer
, “
Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti
,”
Phys. Rev. B
81
(
9
), 094203 (
2010
).
18.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
, “
Special quasirandom structures
,”
Phys. Rev. Lett.
65
(
3
),
353
356
(
1990
).
19.
H.
Balboa
,
L.
Van Brutzel
,
A.
Chartier
, and
Y.
Le Bouar
, “
Damage characterization of (U,Pu)O2 under irradiation by molecular dynamics simulations
,”
J. Nucl. Mater.
512
,
440
449
(
2018
).
20.
M. W. D.
Cooper
,
M. J. D.
Rushton
, and
R. W.
Grimes
, “
A many-body potential approach to modelling the thermomechanical properties of actinide oxides
,”
J. Phys.: Condens. Matter
26
(
10
),
105401
(
2014
).
21.
C.
Takoukam-Takoundjou
,
E.
Bourasseau
, and
V.
Lachet
, “
Study of thermodynamic properties of U1-yPuyO2 MOX fuel using classical molecular Monte Carlo simulations
,”
J. Nucl. Mater.
534
,
152125
(
2020
).
22.
X.-Y.
Liu
and
D. A.
Andersson
, “
Small uranium and oxygen interstitial clusters in UO2 : An empirical potential study
,”
J. Nucl. Mater.
547
,
152783
(
2021
).
23.
K.
Li
,
C. C.
Fu
,
M.
Nastar
,
F.
Soissons
, and
M. Y.
Lavrentiev
, “
Magnetochemical effects on phase stability and vacancy formation in fcc Fe-Ni alloys
,” Arxiv220304688 Cond-Matmtrl-Sci.
24.
L.-F.
Wang
,
B.
Sun
,
H.-F.
Liu
,
D.-Y.
Lin
, and
H.-F.
Song
, “
Thermodynamics and kinetics of intrinsic point defects in plutonium dioxides
,”
J. Nucl. Mater.
526
,
151762
(
2019
).
25.
M.
Nastar
and
F.
Soisson
, “
Atomistic modeling of phase transformations: Point-defect concentrations and the time-scale problem
,”
Phys. Rev. B
86
(
22
),
220102
(
2012
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
27.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
(
20
),
14251
14269
(
1994
).
28.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
29.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
30.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
, “
Chemical accuracy for the Van der Waals density functional
,”
J. Phys.: Condens. Matter
22
(
2
),
022201
(
2010
).
31.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
, “
Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators
,”
Phys. Rev. B
52
(
8
),
R5467
R5470
(
1995
).
32.
I. C.
Njifon
,
M.
Bertolus
,
R.
Hayn
, and
M.
Freyss
, “
Electronic structure investigation of the bulk properties of uranium–plutonium mixed oxides (U, Pu)O2
,”
Inorg. Chem.
57
(
17
),
10974
10983
(
2018
).
33.
M. S.
Talla Noutack
,
G.
Jomard
,
M.
Freyss
, and
G.
Geneste
, “
Structural, electronic and energetic properties of uranium–americium mixed oxides U1-yAmyO2 using DFT + U calculations
,”
J. Phys.: Condens. Matter
31
(
48
),
485501
(
2019
).
34.
G.
Jomard
,
B.
Amadon
,
F.
Bottin
, and
M.
Torrent
, “
Structural, thermodynamic, and electronic properties of plutonium oxides from first principles
,”
Phys. Rev. B
78
(
7
),
075125
(
2008
).
35.
S. B.
Wilkins
 et al, “
Direct observation of electric-quadrupolar order in UO2
,”
Phys. Rev. B
73
(
6
), 060406 (
2006
).
36.
P.
Santini
,
S.
Carretta
,
G.
Amoretti
,
R.
Caciuffo
,
N.
Magnani
, and
G. H.
Lander
, “
Multipolar interactions in f -electron systems: The paradigm of actinide dioxides
,”
Rev. Mod. Phys.
81
(
2
),
807
863
(
2009
).
37.
B.
Dorado
and
P.
Garcia
, “
First-principles DFT + U modeling of actinide-based alloys: Application to paramagnetic phases of UO2 and (U,Pu) mixed oxides
,”
Phys. Rev. B
87
(
19
),
195139
(
2013
).
38.
G.
Raphael
and
R.
Lallement
, “
Susceptibilité magnétique de PuO2
,”
Solid State Commun.
6
(
6
),
383
385
(
1968
).
39.
S.
Kern
,
C.-K.
Loong
,
G. L.
Goodman
,
B.
Cort
, and
G. H.
Lander
, “
Crystal-field spectroscopy of PuO2 : Further complications in actinide dioxides
,”
J. Phys.: Condens. Matter
2
(
7
),
1933
1940
(
1990
).
40.
Y.
Tokunaga
 et al, “
NMR studies of actinide dioxides
,”
J. Alloys Compd.
444–445
,
241
245
(
2007
).
41.
S.
Kern
 et al, “
Crystal-field transition in PuO2
,”
Phys. Rev. B
59
(
1
),
104
106
(
1999
).
42.
J. T.
Pegg
,
A. E.
Shields
,
M. T.
Storr
,
A. S.
Wills
,
D. O.
Scanlon
, and
N. H.
de Leeuw
, “
Hidden magnetic order in plutonium dioxide nuclear fuel
,”
Phys. Chem. Chem. Phys.
20
(
32
),
20943
20951
(
2018
).
43.
B.
Dorado
,
G.
Jomard
,
M.
Freyss
, and
M.
Bertolus
, “
Stability of oxygen point defects in UO2 by first-principles DFT + U calculations: Occupation matrix control and Jahn–Teller distortion
,”
Phys. Rev. B
82
,
035114
(
2010
).
44.
B.
Meredig
,
A.
Thompson
,
H. A.
Hansen
,
C.
Wolverton
, and
A.
van de Walle
, “
Method for locating low-energy solutions within DFT + U
,”
Phys. Rev. B
82
(
19
),
195128
(
2010
).
45.
D.
Gryaznov
,
E.
Heifets
, and
E.
Kotomin
, “
The first-principles treatment of the electron-correlation and spin–orbital effects in uranium mononitride nuclear fuels
,”
Phys. Chem. Chem. Phys.
14
(
13
),
4482
(
2012
).
46.
H. Y.
Geng
,
Y.
Chen
,
Y.
Kaneta
,
M.
Kinoshita
, and
Q.
Wu
, “
Interplay of defect cluster and the stability of xenon in uranium dioxide from density functional calculations
,”
Phys. Rev. B
82
(
9
),
094106
(
2010
).
47.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
(
4
),
340
343
(
1939
).
48.
G. H. F.
Diercksen
and
S.
Wilson
,
Methods in Computational Molecular Physics
(
Springer Netherlands
,
Dordrecht
,
1983
).
49.
T. S.
Bjørheim
,
M.
Arrigoni
,
D.
Gryaznov
,
E.
Kotomin
, and
J.
Maier
, “
Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations
,”
Phys. Chem. Chem. Phys.
17
(
32
),
20765
20774
(
2015
).
50.
A.
Marco
,
K. A.
Eugene
, and
M.
Joachim
, “
First-principles study of perovskite ultrathin films: Stability and confinement effects
,”
Isr. J. Chem.
57
,
509
521
(
2017
).
You do not currently have access to this content.