The deformation of a fluid interface by the acoustic radiation pressure has been used for surface tension measurements or to design exotic structures such as acoustic diodes. However, few studies focus on the characterization of the spatial characteristics of deformation induced by transient excitation, making research requiring precise spatial control of deformation challenging. This paper investigates experimentally and numerically the effects of transient excitation on deformation generated by an acoustic radiation pressure at the water–air interface. A numerical model using the finite-element method and based on theoretical background for permanent excitation is generalized to transient excitation. An experimental setup is developed to evaluate the maximum height of interface deformation for different durations and amplitudes of ultrasonic excitation using two complementary methods: the first using a camera and an edge detection algorithm and the other using a multichromatic confocal displacement sensor. Numerical and experimental results for a non-steady-state excitation show a quadratic evolution of the height of deformation as a function of incident pressure and also a linear increase as a function of the excitation duration. The evaluation of the deformation height induced by acoustic radiation pressure at a water–air interface for a transient excitation paves the way to applications requiring noncontact space-time interface modulation, such as subwavelength phenomena.

1.
L.
Rayleigh
, “
XXXIV. On the pressure of vibrations
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
3
,
338
346
(
1902
).
2.
J. A.
Rooney
, “
Nonlinear phenomena
,” in
Methods of Experimental Physics
(
Academic
,
New York
,
1981
), Vol. 19.
3.
C. P.
Lee
and
T. G.
Wang
, “
Acoustic radiation force on a bubble
,”
J. Acoust. Soc. Am.
93
,
1637
1640
(
1993
).
4.
R.
Löfstedt
and
S.
Putterman
, “
Theory of long wavelength acoustic radiation pressure
,”
J. Acoust. Soc. Am.
90
,
2027
2033
(
1991
).
5.
P.
Biquard
, “
Les ondes ultra-sonores
,”
Rev. Acoust.
1
,
93
(
1932
).
6.
G.
Hertz
and
H.
Mende
, “
Der schallstrahlungsdruck in fliissigkeiten
,”
Z. Phys.
114
,
354
367
(
1939
).
7.
R. T.
Beyer
, “
Radiation pressure—The history of a mislabeled tensor
,”
J. Acoust. Soc. Am.
63
,
1025
1030
(
1978
).
8.
B.-T.
Chu
and
R. E.
Apfel
, “
Acoustic radiation pressure produced by a beam of sound
,”
J. Acoust. Soc. Am.
72
(
16
), 1673–1687 (
1982
).
9.
O. V.
Rudenko
,
A. P.
Sarvazyan
, and
S. Y.
Emelianov
, “
Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium
,”
J. Acoust. Soc. Am.
99
,
2791
2798
(
1996
).
10.
T.
Kamakura
,
K.
Matsuda
,
Y.
Kumamoto
, and
M. A.
Breazeale
, “
Acoustic streaming induced in focused Gaussian beams
,”
J. Acoust. Soc. Am.
97
,
2740
2746
(
1995
).
11.
P. L.
Marston
, “
Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses-theory
,”
J. Acoust. Soc. Am.
67
,
15
26
(
1980
).
12.
P. L.
Marston
,
S. E.
LoPorto-Arione
, and
G. L.
Pullen
, “
Quadrupole projection of the radiation pressure on a compressible sphere
,”
J. Acoust. Soc. Am.
69
,
1499
1501
(
1981
).
13.
A. L.
Yarin
,
M.
Pfaffenlehner
, and
C.
Tropea
, “
On the acoustic levitation of droplets
,”
J. Fluid Mech.
356
,
65
91
(
1998
).
14.
P. L.
Marston
and
R. E.
Apfel
, “
Quadrupole resonance of drops driven by modulated acoustic radiation pressure-experimental properties
,”
J. Acoust. Soc. Am.
67
,
27
37
(
1980
).
15.
T. J.
Asaki
and
P. L.
Marston
, “
Equilibrium shape of an acoustically levitated bubble driven above resonance
,”
J. Acoust. Soc. Am.
97
,
2138
2143
(
1995
).
16.
S.
Callé
,
J.-P.
Remenieras
,
O. B.
Matar
,
M. E.
Hachemi
, and
F.
Patat
, “
Temporal analysis of tissue displacement induced by a transient ultrasound radiation force
,”
J. Acoust. Soc. Am.
118
,
2829
2840
(
2005
).
17.
B.
Issenmann
,
A.
Nicolas
,
R.
Wunenburger
,
S.
Manneville
, and
J.-P.
Delville
, “
Deformation of acoustically transparent fluid interfaces by the acoustic radiation pressure
,”
Europhys. Lett.
83
,
34002
(
2008
).
18.
S.
Calle
,
G.
Ferin
, and
J.-P.
Remenieras
, “
Estimation of the radiation force on implanted medical devices: A theorerical study
,”
J. Acoust. Soc. Am.
131, 3368 (
2012
).
19.
R. J.
Lang
, “
Ultrasonic atomization of liquids
,”
J. Acoust. Soc. Am.
34
,
6
–8 (
1962
).
20.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
,
024301
(
2016
).
21.
T.
Devaux
,
A.
Cebrecos
,
O.
Richoux
,
V.
Pagneux
, and
V.
Tournat
, “
Acoustic radiation pressure for nonreciprocal transmission and switch effects
,”
Nat. Commun.
10
,
3292
(
2019
).
22.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. Lond. Ser. Math. Phys. Sci.
147
,
212
240
(
1934
).
23.
K.
Nightingale
,
M. S.
Soo
,
R.
Nightingale
, and
G.
Trahey
, “
Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility
,”
Ultrasound Med. Biol.
28
,
227
235
(
2002
).
24.
C.
Cinbis
,
N. N.
Mansour
, and
B. T.
Khuri-Yakub
, “
Effect of surface tension on the acoustic radiation pressure-induced motion of the water–air interface
,”
J. Acoust. Soc. Am.
94
,
2365
2372
(
1993
).
25.
K.
Sakai
,
D.
Mizuno
, and
K.
Takagi
, “
Measurement of liquid surface properties by laser-induced surface deformation spectroscopy
,”
Phys. Rev. E
63
,
046302
(
2001
).
26.
E. H.
Trinh
,
P. L.
Marston
, and
J. L.
Robey
, “
Acoustic measurement of the surface tension of levitated drops
,”
J. Colloid Interface Sci.
124
,
95
103
(
1988
).
27.
T. J.
Asaki
,
D. B.
Thiessen
, and
P. L.
Marston
, “
Effect of an insoluble surfactant on capillary oscillations of bubbles in water: Observation of a maximum in the damping
,”
Phys. Rev. Lett.
75
,
2686
2689
(
1995
).
28.
F. E.
Borgnis
, “
Acoustic radiation pressure of plane compressional waves
,”
Rev. Mod. Phys.
25
,
653
664
(
1953
).
29.
G. S.
Kino
,
Acoustic Waves, Devices, Imaging and Analog Signal Processing
(
Prentic-Hall
,
1987
).
30.
F.
Coulouvrat
, “
Continuous field radiated by a geometrically focused transducer: Numerical investigation and comparison with an approximate model
,”
J. Acoust. Soc. Am.
94
,
1663
1675
(
1993
).
31.
R.
Piessens
,
‘Hankel Transform’ in Transforms and Applications Handbook
(
A. D. Poularikas CRC
,
Boca Raton
,
FL
,
2010
).
32.
N. G. C.
Astrath
,
L. C.
Malacarne
,
M. L.
Baesso
,
G. V. B.
Lukasievicz
, and
S. E.
Bialkowski
, “
Unravelling the effects of radiation forces in water
,”
Nat. Commun.
5
,
4363
(
2014
).
33.
Z.
Xu
,
K.
Yasuda
, and
X.
Liu
, “
Simulation of the formation and characteristics of ultrasonic fountain
,”
Ultrason. Sonochem.
32
,
241
246
(
2016
).
34.
H.
Nomura
and
M.
Shimomura
, “
Water surface displacement induced by acoustic radiation pressure of focused ultrasound acting on air-water interface
,”
Proc. Mtgs. Acoust.
39
,
045025
(
2020
).
35.
I. I.
Komissarova
,
G. V.
Ostrovskaya
, and
E. N.
Shedova
, “
Light pressure-induced deformations of a free liquid surface
,”
Opt. Commun.
66
,
15
20
(
1988
).
36.
R.
Maini
, “
Study and comparison of various image edge detection techniques
,”
Int. J. Image Process.
13
, 1–11 (
2009
).
37.
C.-J.
Weng
 et al., “
Confocal displacement sensor with varifocal lens
,” in
2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings
(
IEEE
,
2015
), pp.
728
733
.
38.
T. J.
Asaki
,
P. L.
Marston
, and
E. H.
Trinh
, “
Shape oscillations of bubbles in water driven by modulated ultrasonic radiation pressure: Observations and detection with scattered laser light
,”
J. Acoust. Soc. Am.
93
,
706
713
(
1993
).
39.
J. B.
Lonzaga
,
C. F.
Osterhoudt
,
D. B.
Thiessen
, and
P. L.
Marston
, “
Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production
,”
J. Acoust. Soc. Am.
121
,
3323
3330
(
2007
).
40.
S. F.
Morse
,
D. B.
Thiessen
, and
P. L.
Marston
, “
Capillary bridge modes driven with modulated ultrasonic radiation pressure
,”
Phys. Fluids
8
,
3
5
(
1996
).
41.
M.
Kornfeld
and
V. L.
Triers
, “
Swelling of a liquid surface under the influence of ultrasound
,”
Sov. Phys. Tech. Phys.
26
,
2778
(
1956
).
You do not currently have access to this content.