The longest spin coherence times for nitrogen-vacancy (NV) centers at room temperature have been achieved in phosphorus-doped n-type diamond. However, difficulty controlling impurity incorporation and the utilization of highly toxic phosphine gas in the chemical vapor deposition (CVD) technique pose problems for the growth of n-type diamond. In the present study, n-type diamond samples were synthesized by CVD using tert-butylphosphine, which is much less toxic than phosphine. The unintentional incorporation of nitrogen was found to be suppressed by incrementally increasing the gas flow rates of H2 and CH4. It was found that the spin coherence time (T2) increased with decreasing the nitrogen concentration, which suggests that the nitrogen concentration limits the length of T2. In the sample with the lowest nitrogen concentration, T2 increased to 1.62 ± 0.10 ms. Optically detected magnetic resonance spectra indicated that all of the measured NV centers were aligned along the [111] direction. Hall measurements confirmed n-type conduction in three measured samples prepared under different growth conditions. The highest measured Hall mobility at room temperature was 422 cm2/(V s). This study provides appropriate CVD conditions for growing phosphorus-doped n-type diamond with perfectly aligned NV centers exhibiting long spin coherence times, which is important for the production of quantum diamond devices.

1.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2010
).
2.
C L
Degen
,
F.
Reinhard
, and
P.
Cappellaro
,
Rev. Mod. Phys.
89
,
035002
(
2017
).
3.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
,
Rev. Mod. Phys.
92
,
68
(
2020
).
4.
L.
Rondin
,
J.-P.
Tetienne
,
T.
Hingant
,
J.-F.
Roch
,
P.
Maletinsky
, and
V.
Jacques
,
Rep. Prog. Phys.
77
,
056503
(
2014
).
5.
N.
Bar-Gill
,
L. M.
Pham
,
A.
Jarmola
,
D.
Budker
, and
R. L.
Walsworth
, “
Solid-state electronic spin coherence time approaching one second
,”
Nat. Commun.
4
,
1743
(
2013
).
6.
M. H.
Abobeih
,
J.
Cramer
,
M. A.
Bakker
,
N.
Kalb
,
M.
Markham
,
D. J.
Twitchen
, and
T. H.
Taminiau
,
Nat. Commun.
9
,
2552
(
2018
).
7.
G.
Balasubramanian
,
P.
Neumann
,
D.
Twitchen
,
M.
Markham
,
R.
Kolesov
,
N.
Mizuochi
,
J.
Isoya
,
J.
Achard
,
J.
Beck
,
J.
Tissler
,
V.
Jacques
,
F.
Jelezko
, and
J.
Wrachtrup
,
Nat. Mater.
8
,
383
(
2009
).
8.
P. C.
Maurer
,
G.
Kucsko
,
C.
Latta
,
L.
Jiang
,
N. Y.
Yao
,
S. D.
Bennett
,
F.
Pastawski
,
D.
Hunger
,
N.
Chisholm
,
M.
Markham
,
D. J.
Twitchen
,
J. I.
Cirac
, and
M. D.
Lukin
,
Science
336
,
1283
(
2012
).
9.
E. D.
Herbschleb
,
H.
Kato
,
Y.
Maruyama
,
T.
Danjo
,
T.
Makino
,
S.
Yamasaki
,
I.
Ohki
,
K.
Hayashi
,
H.
Morishita
,
M.
Fujiwara
, and
N.
Mizuochi
,
Nat. Commu.
10
,
3766
(
2019
).
10.
K. D.
Jahnke
,
B.
Naydenov
,
T.
Teraji
,
S.
Koizumi
,
T.
Umeda
,
J.
Isoya
, and
F.
Jelezko
,
Appl. Phys. Lett.
101
,
012405
(
2012
).
11.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikström
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
,
Science
297
,
1670
(
2002
).
12.
E. D.
Herbschleb
,
H.
Kato
,
T.
Makino
,
S.
Yamasaki
, and
N.
Mizuochi
,
Nat. Commun.
12
,
306
(
2021
).
13.
T.
Xie
,
Z.
Zhao
,
X.
Kong
,
W.
Ma
,
M.
Wang
,
X.
Ye
,
P.
Yu
,
Z.
Yang
,
S.
Xu
,
P.
Wang
,
Y.
Wang
,
F.
Shi
, and
J.
Du
,
Sci. Adv.
7
,
eabg9204
(
2021
).
14.
T.
Chakraborty
,
F.
Lehmann
,
J.
Zhang
,
S.
Borgsdorf
,
N.
Wöhrl
,
R.
Remfort
,
V.
Buck
,
U.
Köhler
, and
D.
Suter
,
Phys. Rev. Mater.
3
,
065205
(2019).
15.
Y.
Doi
,
T.
Fukui
,
H.
Kato
,
T.
Makino
,
S.
Yamasaki
,
T.
Tashima
,
H.
Morishita
,
S.
Miwa
,
F.
Jelezko
,
Y.
Suzuki
, and
N.
Mizuochi
,
Phys. Rev. B
93
,
081203(R)
(
2016
).
16.
A.
Watanabe
,
T.
Nishikawa
,
H.
Kato
,
M.
Fujie
,
M.
Fujiwara
,
T.
Makino
,
S.
Yamasaki
,
E. D.
Herbschleb
, and
N.
Mizuochi
,
Carbon
178
,
294
300
(
2021
).
17.
T.
Fukui
,
Y.
Doi
,
T.
Miyazaki
,
Y.
Miyamoto
,
H.
Kato
,
T.
Matsumoto
,
T.
Makino
,
S.
Yamasaki
,
R.
Morimoto
,
N.
Tokuda
,
M.
Hatano
,
Y.
Sakagawa
,
H.
Morishita
,
T.
Tashima
,
S.
Miwa
,
Y.
Suzuki
, and
N.
Mizuochi
,
Appl. Phys. Express
7
,
055201
(
2014
).
18.
J.
Michl
,
T.
Teraji
,
S.
Zaiser
,
I.
Jakobi
,
G.
Waldherr
,
F.
Dolde
,
P.
Neumann
,
M. W.
Doherty
,
N. B.
Manson
,
J.
Isoya
, and
J.
Wrachtrup
,
Appl. Phys. Lett.
104
,
102407
(
2014
).
19.
M.
Lesik
,
J.-P.
Tetienne
,
A.
Tallaire
,
J.
Achard
,
V.
Mille
,
A.
Gicquel
,
J.-F.
Roch
, and
V.
Jacques
,
Appl. Phys. Lett.
104
,
113107
(
2014
).
20.
M. W. N.
Ngambou
,
C.
Pellet-Mary
,
O.
Brinza
,
A.
Antonino
,
G.
Hetet
,
A.
Tallaire
,
F.
Bénédic
, and
J.
Achard
,
Diam. Relat. Mater.
123
,
108884
(
2022
).
21.
P.
Balasubramanian
,
C.
Osterkamp
,
O.
Brinza
,
M.
Rollo
,
I.
Robert-Philip
,
P.
Goldner
,
V.
Jacques
,
F.
Jelezko
,
J.
Achard
, and
A.
Tallaire
,
Carbon
194
,
282
(
2022
).
22.
T.
Tsuji
,
H.
Ishiwata
,
T.
Sekiguchi
,
T.
Iwasaki
, and
M.
Hatano
,
Diam. Relat. Mater.
123
,
108840
(
2022
).
23.
J.
Langer
,
V.
Cimalla
,
V.
Lebedev
,
L.
Kirste
,
M.
Prescher
,
T.
Luo
,
J.
Jeske
, and
O.
Ambacher
,
Phys. Status Solidi A
219
,
2100756
(
2022
).
24.
S.
Koizumi
,
M.
Kamo
,
Y.
Sato
,
H.
Ozaki
, and
T.
Inuzuka
,
Appl. Phys. Lett.
71
,
1065
(
1997
).
25.
A.
Tajani
,
E.
Gheeraert
,
N.
Casanova
,
E.
Bustarret
,
J. A.
Garrido
,
G.
Rumen
,
C. E.
Nebel
,
M. E.
Newton
, and
D.
Evans
,
Phys. Status Solidi A
193
,
541
(
2002
).
26.
T.
Kociniewski
,
J.
Barjon
,
M.-A.
Pinault
,
F.
Jomard
,
A.
Lusson
,
D.
Ballutaud
,
O.
Gorochov
,
J. M.
Laroche
,
E.
Rzepka
,
J.
Chevallier
, and
C.
Saguy
,
Phys. Status Solidi A
203
,
3136
(
2006
).
27.
H.
Kato
,
H.
Umezawa
,
N.
Tokuda
,
D.
Takeuchi
,
H.
Okushi
, and
S.
Yamasaki
,
Appl. Phys. Lett.
93
,
202103
(
2008
).
28.
H.
Kato
,
T.
Makino
,
S.
Yamasaki
, and
H.
Okushi
,
J. Phys. D
40
,
6189
(
2007
).
29.
T.
Yamamoto
,
D.
Kaneta
,
T.
Matsumoto
,
O.
Ariyada
,
M.
Ogura
,
H.
Kato
,
S.
Yamasaki
,
N.
Tokuda
, and
T.
Inokuma
,
Meet. Abstr.
MA2016-02
,
4005
(
2016
).
30.
N.
Tokuda
,
T.
Inokuma
,
K.
Baba
,
S.
Watanabe
,
D.
Kaneda
, and
O.
Ariyada
, Japan patent No. JP6709491B.
31.
H.
Kato
,
M.
Ogura
,
T.
Makino
,
D.
Takeuchi
, and
S.
Yamasaki
, “
N-type control of single-crystal diamond films by ultra-lightly phosphorus doping
,”
Appl. Phys. Lett.
109
,
142102
(
2016
).
32.
T.
Teraji
,
M.
Katagiri
,
S.
Koizumi
,
T.
Ito
, and
H.
Kanda
,
Jpn. J. Appl. Phys.
42
,
L882
(
2003
).
33.
A.
Beveratos
,
S.
Kühn
,
R.
Brouri
,
T.
Gacoin
,
J.-P.
Poizat
, and
P.
Grangier
,
Eur. Phys. J. D
18
,
191
196
(
2002
).
34.
N.
Mizuochi
,
P.
Neumann
,
F.
Rempp
,
J.
Beck
,
V.
Jacques
,
P.
Siyushev
,
K.
Nakamura
,
D.
Twitchen
,
H.
Watanabe
,
S.
Yamasaki
,
F.
Jelezko
, and
J.
Wrachtrup
,
Phys. Rev. B
80
,
041201(R)
(
2009
).
35.
J. A.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance
(
Wiley
,
New York
,
1994
).
36.
N.
Bar-Gill
,
L. M.
Pham
,
A.
Jarmola
,
D.
Budker
, and
R. L.
Walsworth
, “
Solid-state electronic spin coherence time approaching one second
,”
Nat. Commun.
4
,
1743
(
2013
).
37.
C.
Glover
,
M. E.
Newton
,
P. M.
Martineau
,
S.
Quinn
, and
D. J.
Twitchen
,
Phys. Rev. Lett.
92
,
135502
(
2004
).
38.
K.
Iakoubovskii
and
A.
Stesmans
,
J. Phys. Condens. Matter
14
,
R467
(
2002
).
39.
F.
Fávaro De Oliveira
,
D.
Antonov
,
Y.
Wang
,
P.
Neumann
,
S. A.
Momenzadeh
,
T.
Häußermann
,
A.
Pasquarelli
,
A.
Denisenko
, and
J.
Wrachtrup
,
Nat. Commun.
8
,
15409
(
2017
).
40.
T.
Lühmann
,
R.
John
,
R.
Wunderlich
,
J.
Meijer
, and
S.
Pezzagna
,
Nat. Commun.
10
,
4956
(
2019
).
41.
L. J.
van der Pauw
,
Philips Res. Rep.
13
,
1
(
1958
).
42.
M.
Suzuki
,
S.
Koizumi
,
M.
Katagiri
,
T.
Ono
,
N.
Sakuma
,
H.
Yoshida
,
T.
Sakai
, and
S.
Uchikoga
,
Phys. Status Solidi A
203
,
3128
(
2006
).
43.
F.
Nava
,
C.
Canali
,
C.
Jacoboni
,
L.
Reggiani
, and
S. F.
Kozlov
,
Solid State Commun.
33
,
475
477
(
1980
).
44.
J.
Pernot
,
C.
Tavares
,
E.
Gheeraert
,
E.
Bustarret
,
M.
Katagiri
, and
S.
Koizumi
,
Appl. Phys. Lett.
89
,
122111
(
2006
).
45.
J.
Pernot
and
S.
Koizumi
,
Appl. Phys. Lett.
93
,
052105
(
2008
).
46.
H.
Kato
,
M.
Ogura
,
T.
Makino
,
D.
Takeuchi
, and
S.
Yamasaki
,
Appl. Phys. Lett.
109
,
142102
(
2016
).
You do not currently have access to this content.